Suppr超能文献

Antibody responses to melanoma/melanocyte autoantigens in melanoma patients.

作者信息

Huang S K, Okamoto T, Morton D L, Hoon D S

机构信息

John Wayne Cancer Institute, Saint John's Health Center, Santa Monica, California 90404, USA.

出版信息

J Invest Dermatol. 1998 Oct;111(4):662-7. doi: 10.1046/j.1523-1747.1998.00354.x.

Abstract

Melanogenesis-related proteins play important roles in melanin synthesis and antigenicity of melanomas. Identification of highly expressed melanoma-associated antigens (MAA) that are immunogenic in humans will provide potential targets for cancer vaccines. Melanogenesis-related proteins have been shown to be MAA. Autoantibody responses to these MAA have been shown to react with melanoma cells and melanocytes, and suggested to play a role in controlling melanoma progression. To assess antibody responses to potential melanoma/melanocyte autoantigens, the open-reading frame sequences of tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and melanoma-associated glycoprotein antigen family (gp100/pmel17) genes were cloned and expressed as recombinant proteins in E. coli. Purified recombinant antigens were employed to detect antibodies in sera of melanoma patients and normal healthy donors. By affinity enzyme-linked immunosorbent assay and western blotting, all recombinant antigens were shown to be antigenic. The main subclass of antibody response to these antigens was IgG. Most importantly this study demonstrated anti-TRP-2 and anti-gp100/pmel17 IgG responses in melanoma patients. Only one of 23 normal donors had an antibody response to the antigens tested. MAA-specific IgG antibodies in sera were assessed in melanoma patients (n = 23) pre- and post-polyvalent melanoma cell vaccine treatment. Polyvalent melanoma cell vaccine treatment enhanced anti-MAA antibody responses; however, only anti-TRP-2 and anti-gp100/pmel17 antibody response was enhanced. These studies suggest that four melanogenesis-related proteins are autoimmunogenic and can be used as potential targets for active-specific immunotherapy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验