Spencer P, Stolowich N J, Sumner L W, Scott A I
Department of Chemistry, Texas A and M University, College Station 77843-3255, USA.
Biochemistry. 1998 Oct 20;37(42):14917-27. doi: 10.1021/bi981366f.
The enzyme CbiL from the facultative anaerobe Salmonella typhimurium exhibits a high degree of homology to CobI from the aerobe Pseudomonas denitrificans (29% identity; 51% conservation obtained by a Blastp search of the ncbi database). As CobI catalyzes the third methylation in the aerobic pathway to vitamin B12 it is proposed that CbiL catalyzes the analogous step in the anaerobic pathway. Potential metallo and metal-free substrates were characterized and their redox states defined by a combination of physicochemical techniques (MALDI-MS, NMR, UV/vis, IR, and EPR) and then used to investigate the function of CbiL. CbiL exhibited an absolute requirement for the presence of a metal ion (Co(II), Ni(II), or Zn(II)) within the tetrapyrrole substrate. CbiL had no preference for the redox state of its cobalt tetrapyrrole substrate, methylating both the reduced form, Co(II) 2, 7-dimethyl-dipyrrocorphin (Co(II)-precorrin-2), and the oxidized form, Co(III) 2,7-dimethyl-isobacterioclorin (Co(III)-factor-II). In contrast CbiL had a marked preference for the oxidized Ni(II) and Zn(II)-2,7-dimethyl-isobacteriochlorin (Ni(II) and Zn(II)-factor-II). Removal of the metal ion from a product of CbiL (Zn(II)-factor-III) allowed characterization by 13C NMR, identifying the tetrapyrrole as 2,7,20-trimethyl-isobacteriochlorin (factor-3), indicating that CbiL methylates at C20, the same site as that methylated by CobI. Competition experiments, utilizing isotopic labeling to distinguish otherwise identical mass substrates and products, revealed that oxidized Co(III) or Ni(II)-factor-II were equally good substrates, whereas Co(II)-precorrin-2 was much preferred over Ni(II)-precorrin-2. Excess Ni(II)-precorrin-2 did not decrease CbiL methylation of Co(II)-precorrin-2, implying that CbiL has a low affinity for Ni(II)-precorrin-2. These results are interpreted on the basis of tetrapyrrole ruffling occurring on the optimization of the metallo-N bond distances. The greater flexibility of the reduced precorrin-2 ring system allows greater deformation on accommodating the bound metal ion, the distortions imposed by bound Ni(II) or Zn(II) ions being larger than Co(II). The resulting distortions imposed on the precorrin ring could then decrease catalysis by causing a departure from the optimal substrate conformation required for CbiL. On oxidation of the Ni(II) or Zn(II)-precorrin-2, the increased stiffness of the ring could then constrain the metallo-factor-II conformation toward that of the usual substrate, allowing greater methylation by CbiL. In contrast to its counterpart CobI in the aerobic pathway of B12 biosynthesis, which methylates the metal-free precorrin-2, these studies show CbiL to be the first methylase unique to the anaerobic pathway, methylating a metallo-precorrin-2 substrate. Implications of CbiL specificity for the mechanism of the anaerobic B12 pathway are discussed.
兼性厌氧菌鼠伤寒沙门氏菌中的CbiL酶与需氧菌反硝化假单胞菌中的CobI具有高度同源性(通过对ncbi数据库进行Blastp搜索,序列一致性为29%;保守性为51%)。由于CobI催化有氧途径中维生素B12合成的第三步甲基化反应,因此推测CbiL催化厌氧途径中的类似步骤。通过多种物理化学技术(基质辅助激光解吸电离质谱、核磁共振、紫外可见光谱、红外光谱和电子顺磁共振)对潜在的含金属和不含金属的底物进行了表征,并确定了它们的氧化还原状态,然后用于研究CbiL的功能。CbiL对四吡咯底物中金属离子(Co(II)、Ni(II)或Zn(II))的存在表现出绝对需求。CbiL对其钴四吡咯底物的氧化还原状态没有偏好,既能甲基化还原形式的Co(II) 2,7-二甲基二吡咯啉(Co(II)-前咕啉-2),也能甲基化氧化形式的Co(III) 2,7-二甲基异杆菌叶绿素(Co(III)-因子-II)。相比之下,CbiL对氧化态的Ni(II)和Zn(II)-2,7-二甲基异杆菌叶绿素(Ni(II)和Zn(II)-因子-II)有明显偏好。从CbiL的产物(Zn(II)-因子-III)中去除金属离子后,通过13C核磁共振进行表征,确定四吡咯为2,7,20-三甲基异杆菌叶绿素(因子-3),表明CbiL在C20位甲基化,与CobI甲基化的位点相同。利用同位素标记区分其他质量相同的底物和产物的竞争实验表明,氧化态的Co(III)或Ni(II)-因子-II是同样好的底物,而Co(II)-前咕啉-2比Ni(II)-前咕啉-2更受青睐。过量的Ni(II)-前咕啉-2不会降低CbiL对Co(II)-前咕啉-2的甲基化作用,这意味着CbiL对Ni(II)-前咕啉-2的亲和力较低。这些结果是基于在优化金属-N键距离时发生的四吡咯褶皱来解释的。还原型前咕啉-2环系统具有更大的灵活性,在容纳结合的金属离子时允许更大的变形,结合的Ni(II)或Zn(II)离子引起的扭曲大于Co(II)。然后,施加在前咕啉环上的由此产生的扭曲可能会导致偏离CbiL所需的最佳底物构象,从而降低催化作用。在Ni(II)或Zn(II)-前咕啉-2氧化后,环的刚性增加,可能会将金属-因子-II构象限制为通常底物的构象,从而允许CbiL进行更大程度的甲基化。与维生素B12生物合成有氧途径中的对应物CobI不同,CobI甲基化无金属的前咕啉-2,这些研究表明CbiL是厌氧途径中独特的第一种甲基转移酶,甲基化金属-前咕啉-2底物。讨论了CbiL特异性对厌氧维生素B12途径机制的影响。