Suppr超能文献

在无氧条件下类咕啉是如何合成的:自然界中通往维生素B12的第一条途径。

How corrinoids are synthesized without oxygen: nature's first pathway to vitamin B12.

作者信息

Santander P J, Roessner C A, Stolowich N J, Holderman M T, Scott A I

机构信息

Chemistry Department, Texas A&M University, College Station 77843-3255, USA.

出版信息

Chem Biol. 1997 Sep;4(9):659-66. doi: 10.1016/s1074-5521(97)90221-0.

Abstract

BACKGROUND

During the biosynthesis of vitamin B12, the aerobic bacterium Pseudomonas denitrificans uses two enzymes, CobG and CobJ, to convert precorrin-3 to the ring-contracted intermediate, precorrin-4. CobG is a monooxygenase that adds a hydroxyl group, derived from molecular oxygen, to C-20, whereas CobJ is bifunctional, inserting a methyl group at C-17 of the macrocycle and catalyzing ring contraction. Molecular oxygen is not available to vitamin B12-producing anaerobic bacteria and members of the ancient Archaea, so the question arises of how these microbes accomplish the key ring-contraction process.

RESULTS

Cloning and overexpression of Salmonella typhimurium genes has led to the discovery that a single enzyme, CbiH, is responsible for ring contraction during anaerobic biosynthesis of vitamin B12. The process occurs when CbiH is incubated with precorrin-3, but only in the presence of cobalt. CbiH functions as a C-17 methyltransferase and mediates ring contraction and lactonization to yield the intermediate, cobalt-precorrin-4, isolated as cobalt-factor IV. 13C labeling studies have proved that cobalt-precorrin-4 is incorporated into cobyrinic acid, thereby confirming that cobalt-precorrin-4 is an intermediate in vitamin B12 biosynthesis.

CONCLUSIONS

Two distinct mechanisms exist in nature for the ring contraction of porphyrinoids to corrinoids-an ancient anaerobic pathway that requires cobalt complexation prior to nonoxidative rearrangement, and a more recent aerobic route in which molecular oxygen serves as the cofactor. The present results offer a rationale for the main differences between aerobic and anaerobic biosynthesis of vitamin B12. Thus, in anaerobes there is exchange of oxygen at the C-27 acetate site, extrusion of acetaldehyde and early insertion of cobalt, whereas the aerobes show no exchange of oxygen at C-27, extrude acetic acid and insert cobalt very late in the biosynthetic pathway, after ring contraction has occurred. These parallel routes to vitamin B12 have now been clearly distinguished by their differing mechanisms for ring contraction.

摘要

背景

在维生素B12的生物合成过程中,好氧细菌反硝化假单胞菌利用两种酶,即CobG和CobJ,将前咕啉-3转化为环收缩中间体前咕啉-4。CobG是一种单加氧酶,它将来自分子氧的羟基添加到C-20上,而CobJ具有双功能,在大环的C-17处插入一个甲基并催化环收缩。产生维生素B12的厌氧细菌和古老的古细菌成员无法利用分子氧,因此就产生了这些微生物如何完成关键的环收缩过程的问题。

结果

鼠伤寒沙门氏菌基因的克隆和过表达导致发现一种单一的酶CbiH负责维生素B12厌氧生物合成过程中的环收缩。当CbiH与前咕啉-3一起孵育时,该过程发生,但仅在有钴存在的情况下。CbiH作为C-17甲基转移酶起作用,并介导环收缩和内酯化反应,生成中间体钴-前咕啉-4,分离得到的形式为钴因子IV。13C标记研究已证明钴-前咕啉-4被并入咕啉酸中,从而证实钴-前咕啉-4是维生素B12生物合成中的一个中间体。

结论

自然界中存在两种不同的机制将卟啉类化合物环收缩为咕啉类化合物——一种古老的厌氧途径,在非氧化重排之前需要钴络合,以及一种较新的需氧途径,其中分子氧作为辅因子。目前的结果为维生素B12需氧和厌氧生物合成之间的主要差异提供了理论依据。因此,在厌氧菌中,C-27乙酸盐位点存在氧交换,乙醛被挤出,钴早期插入,而需氧菌在C-27处没有氧交换,挤出乙酸,并且在环收缩发生后,在生物合成途径的很晚阶段才插入钴。现在,通往维生素B12的这些平行途径已通过其不同的环收缩机制得到了明确区分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验