Mittler J E, Sulzer B, Neumann A U, Perelson A S
Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS-K710, NM 87545, USA.
Math Biosci. 1998 Sep;152(2):143-63. doi: 10.1016/s0025-5564(98)10027-5.
We present and analyze a model for the interaction of human immunodeficiency virus type 1 (HIV-1) with target cells that includes a time delay between initial infection and the formation of productively infected cells. Assuming that the variation among cells with respect to this 'intracellular' delay can be approximated by a gamma distribution, a high flexible distribution that can mimic a variety of biologically plausible delays, we provide analytical solutions for the expected decline in plasma virus concentration after the initiation of antiretroviral therapy with one or more protease inhibitors. We then use the model to investigate whether the parameters that characterize viral dynamics can be identified from biological data. Using non-linear least-squares regression to fit the model to simulated data in which the delays conform to a gamma distribution, we show that good estimates for free viral clearance rates, infected cell death rates, and parameters characterizing the gamma distribution can be obtained. For simulated data sets in which the delays were generated using other biologically plausible distributions, reasonably good estimates for viral clearance rates, infected cell death rates, and mean delay times can be obtained using the gamma-delay model. For simulated data sets that include added simulated noise, viral clearance rate estimates are not as reliable. If the mean intracellular delay is known, however, we show that reasonable estimates for the viral clearance rate can be obtained by taking the harmonic mean of viral clearance rate estimates from a group of patients. These results demonstrate that it is possible to incorporate distributed intracellular delays into existing models for HIV dynamics and to use these refined models to estimate the half-life of free virus from data on the decline in HIV-1 RNA following treatment.
我们提出并分析了一种人类免疫缺陷病毒1型(HIV-1)与靶细胞相互作用的模型,该模型包括初始感染与产生感染性细胞形成之间的时间延迟。假设细胞间这种“细胞内”延迟的变化可以用伽马分布来近似,伽马分布是一种高度灵活的分布,能够模拟各种生物学上合理的延迟,我们给出了在使用一种或多种蛋白酶抑制剂开始抗逆转录病毒治疗后血浆病毒浓度预期下降的解析解。然后我们使用该模型来研究能否从生物学数据中识别出表征病毒动力学的参数。通过非线性最小二乘法回归将模型拟合到延迟符合伽马分布的模拟数据,我们表明可以获得游离病毒清除率、感染细胞死亡率以及表征伽马分布的参数的良好估计值。对于延迟是使用其他生物学上合理的分布生成的模拟数据集,使用伽马延迟模型可以获得病毒清除率、感染细胞死亡率和平均延迟时间的合理良好估计值。对于包含添加模拟噪声的模拟数据集,病毒清除率估计值不太可靠。然而,如果已知平均细胞内延迟,我们表明通过取一组患者病毒清除率估计值的调和平均值,可以获得病毒清除率的合理估计值。这些结果表明,有可能将分布的细胞内延迟纳入现有的HIV动力学模型,并使用这些改进的模型根据治疗后HIV-1 RNA下降的数据来估计游离病毒的半衰期。