Suppr超能文献

人体肌肉中的蛋白质和氨基酸代谢

Protein and amino acid metabolism in human muscle.

作者信息

Wagenmakers A J

机构信息

Department of Human Biology, NUTRIM, Maastricht University, The Netherlands.

出版信息

Adv Exp Med Biol. 1998;441:307-19. doi: 10.1007/978-1-4899-1928-1_28.

Abstract

Muscle proteins turn over slowly and there are minimal diurnal changes in the size of the muscle protein pool in response to feeding and fasting. Nitrogen balance and tracer studies indicate that protein oxidation and net protein breakdown (degradation--synthesis) is not increased during dynamic exercise at intensities of < or = 70% VO2max. An imbalance between muscle protein synthesis and degradation does exist during one leg knee extensor exercise and during two legged cycling in patients with glycogen phosphorylase deficiency. In these latter cases amino acids liberated from the protein pool are used for synthesis of TCA-cycle intermediates and glutamine. Six amino acids are metabolized in resting muscle: leucine, isoleucine, valine, asparagine, aspartate and glutamate. Only leucine and part of the isoleucine molecule can be converted to acetylCoA and oxidized. The carbon skeleton of the other amino acids is used for synthesis of TCA-cycle intermediates and glutamine. The six amino acids provide the amino groups and the ammonia for synthesis of glutamine and alanine, which are released by muscle in excessive amounts. About half of the glutamine release from muscle originates from glutamate taken up from the blood. Glutamine produced by muscle is an important fuel and regulator of DNA and RNA synthesis in mucosal cells and immune system cells and fulfils several other important functions in human metabolism. The alanine aminotransferase reaction functions to establish and maintain high concentrations of TCA-cycle intermediates and a high TCA cycle flux in the first minutes of exercise. A gradual increase in leucine oxidation subsequently leads to a carbon drain on the TCA-cycle in glycogen depleted muscles and may thus reduce the maximal flux in the TCA-cycle and lead to fatigue. Deamination of amino acids and glutamine synthesis present alternative anaplerotic mechanisms in glycogen depleted muscles but only allow exercise at 40-50% of Wmax. It is proposed that the maximal flux in the TCA-cycle is reduced in glycogen depleted muscles due to insufficient TCA-cycle anaplerosis and that this presents a limitation for the maximal rate of fatty acid oxidation. Interactions between the amino acid pool and the TCA-cycle thus seem to play a central role in the energy metabolism of the exercising muscle.

摘要

肌肉蛋白周转缓慢,肌肉蛋白池的大小在进食和禁食状态下的昼夜变化极小。氮平衡和示踪研究表明,在运动强度≤70%最大摄氧量(VO2max)的动态运动过程中,蛋白质氧化和净蛋白分解(降解 - 合成)并未增加。在糖原磷酸化酶缺乏的患者进行单腿伸膝运动和双腿骑行时,肌肉蛋白合成与降解之间确实存在失衡。在这些情况下,从蛋白池中释放的氨基酸用于合成三羧酸循环(TCA循环)中间产物和谷氨酰胺。静息肌肉中六种氨基酸会发生代谢:亮氨酸、异亮氨酸、缬氨酸、天冬酰胺、天冬氨酸和谷氨酸。只有亮氨酸以及部分异亮氨酸分子可转化为乙酰辅酶A并被氧化。其他氨基酸的碳骨架用于合成TCA循环中间产物和谷氨酰胺。这六种氨基酸为谷氨酰胺和丙氨酸的合成提供氨基和氨,肌肉会过量释放这两种物质。肌肉释放的谷氨酰胺约一半源自从血液中摄取的谷氨酸。肌肉产生的谷氨酰胺是黏膜细胞和免疫系统细胞中DNA和RNA合成的重要燃料及调节剂,在人体新陈代谢中还发挥着其他多种重要功能。丙氨酸转氨酶反应的作用是在运动的最初几分钟内建立并维持高浓度的TCA循环中间产物以及高TCA循环通量。随后亮氨酸氧化的逐渐增加会导致糖原耗尽的肌肉中TCA循环出现碳流失,从而可能降低TCA循环的最大通量并导致疲劳。氨基酸脱氨基和谷氨酰胺合成是糖原耗尽的肌肉中替代的回补机制,但仅能支持在最大摄氧量(Wmax) 的40 - 50%强度下运动。有人提出,糖原耗尽的肌肉中TCA循环的最大通量因TCA循环回补不足而降低,这对脂肪酸氧化的最大速率构成了限制。因此,氨基酸池与TCA循环之间的相互作用似乎在运动肌肉的能量代谢中起着核心作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验