Suppr超能文献

Adaptive local regularization methods for the inverse ECG problem.

作者信息

Johnson C R, MacLeod R S

机构信息

Department of Computer Science, University of Utah, Salt Lake City 84112, USA.

出版信息

Prog Biophys Mol Biol. 1998;69(2-3):405-23. doi: 10.1016/s0079-6107(98)00017-0.

Abstract

One of the fundamental problems in theoretical electrocardiography can be characterized by an inverse problem. We present new methods for achieving better estimates of heart surface potential distributions in terms of torso potentials through an inverse procedure. First, we outline an automatic adaptive refinement algorithm that minimizes the spatial discretization error in the transfer matrix, increasing the accuracy of the inverse solution. Second, we introduce a new local regularization procedure, which works by partitioning the global transfer matrix into sub-matrices, allowing for varying amounts of smoothing. Each submatrix represents a region within the underlying geometric model in which regularization can be specifically 'tuned' using an a priori scheme based on the L-curve method. This local regularization method can provide a substantial increase in accuracy compared to global regularization schemes. Within this context of local regularization, we show that a generalized version of the singular value decomposition (GSVD) can further improve the accuracy of ECG inverse solutions compared to standard SVD and Tikhonov approaches. We conclude with specific examples of these techniques using geometric models of the human thorax derived from MRI data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验