Clancy J P, Hong J S, Bebök Z, King S A, Demolombe S, Bedwell D M, Sorscher E J
Department of Cell Biology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA.
Biochemistry. 1998 Oct 27;37(43):15222-30. doi: 10.1021/bi980436f.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the traffic ATPase family that includes multiple proteins characterized by (1) ATP binding, (2) conserved transmembrane (TM) motifs and nucleotide binding domains (NBDs), and (3) molecular transport of small molecules across the cell membrane. While CFTR NBD-1 mediates ATP binding and hydrolysis, the membrane topology and function of this domain in living eukaryotic cells remains uncertain. In these studies, we have expressed wild-type CFTR NBD-1 (amino acids 433-586) or NBD-1 containing the DeltaF508 mutation transiently in COS-7 cells and established that the domain is situated across the plasma membrane by four independent assays; namely, extracellular chymotrypsin digestion, surface protein biotinylation, confocal immunofluorescent microscopy, and functional measurements of cell membrane anion permeability. Functional studies indicate that basal halide permeability is enhanced above control conditions following wild-type or DeltaF508 NBD-1 expression in three different epithelial cell lines. Furthermore, when clinically relevant CFTR proteins truncated within NBD-1 (R553X or G542X) are expressed, surface localization and enhanced halide permeability are again established. Together, these findings suggest that isolated CFTR NBD-1 (with or without the DeltaF508 mutation) is capable of targeting the epithelial cell membrane and enhancing cellular halide permeability. Furthermore, CFTR truncated at position 553 or 542 and possessing the majority of NBD-1 demonstrates surface localization and also confers increased halide permeability. These findings indicate that targeting to the plasma membrane and assumption of a transmembrane configuration are innate properties of the CFTR NBD-1. The results also support the notion that components of the halide-selective pore of CFTR reside within NBD-1.
囊性纤维化跨膜传导调节因子(CFTR)是转运ATP酶家族的成员,该家族包括多种具有以下特征的蛋白质:(1)ATP结合;(2)保守的跨膜(TM)基序和核苷酸结合结构域(NBD);(3)小分子跨细胞膜的分子转运。虽然CFTR NBD-1介导ATP结合和水解,但该结构域在活的真核细胞中的膜拓扑结构和功能仍不确定。在这些研究中,我们在COS-7细胞中瞬时表达了野生型CFTR NBD-1(氨基酸433 - 586)或含有DeltaF508突变的NBD-1,并通过四种独立的测定方法确定该结构域位于质膜上;即细胞外胰凝乳蛋白酶消化、表面蛋白生物素化、共聚焦免疫荧光显微镜检查以及细胞膜阴离子通透性的功能测量。功能研究表明,在三种不同的上皮细胞系中表达野生型或DeltaF508 NBD-1后,基础卤化物通透性在对照条件之上增强。此外,当表达在NBD-1内截短的临床相关CFTR蛋白(R553X或G542X)时,再次确定了表面定位和卤化物通透性增强。总之,这些发现表明分离的CFTR NBD-1(有或没有DeltaF508突变)能够靶向上皮细胞膜并增强细胞卤化物通透性。此外,在位置553或542处截短并拥有大部分NBD-1的CFTR表现出表面定位,并且也赋予卤化物通透性增加。这些发现表明靶向质膜和形成跨膜构型是CFTR NBD-1的固有特性。结果还支持CFTR卤化物选择性孔的成分存在于NBD-1内的观点。