van Asperen J, van Tellingen O, van der Valk M A, Rozenhart M, Beijnen J H
Department of Clinical Chemistry, The Netherlands Cancer Institute, Amsterdam.
Clin Cancer Res. 1998 Oct;4(10):2293-7.
Recent experiments in mice have demonstrated that the systemic exposure to p.o. administered paclitaxel is significantly enhanced with coadministration of the P-glycoprotein blocker SDZ PSC 833 (J. van Asperen et al, Br. J. Cancer, 76: 1181-1183, 1997). To facilitate further research on the feasibility of a clinically effective oral formulation of paclitaxel, it is important to know whether cotreatment with a commonly applied and commercially available P-glycoprotein blocker, e.g., cyclosporin A, has a similar effect. Here, we present a detailed study about the effects of cyclosporin A on the pharmacokinetics of p.o. and i.v. administered paclitaxel. Female FVB mice received a combined treatment of 5 or 10 mg/kg paclitaxel (either i.v. or p.o.) plus 0, 10, or 50 mg/kg cyclosporin A (p.o.). The plasma concentrations of paclitaxel were determined at several time points after drug administration using high-performance liquid chromatography. Calculated relative to the area under the plasma concentration-time curve of i.v. administered paclitaxel in mice treated without cyclosporin A, the oral bioavailability of paclitaxel increased from 9.3% up to 67% with coadministration of cyclosporin A. The bioavailability in mice cotreated with 10 or 50 mg/kg cyclosporin A appeared to be similar. The effect of cyclosporin A on the systemic exposure to p.o. administered paclitaxel was the result of both a significantly decreased clearance and an increased uptake. A histological examination revealed that the enhanced absorption was not caused by gastrointestinal toxicity. We conclude that cyclosporin A and SDZ PSC 833 are equally effective in increasing the systemic exposure to p.o. administered paclitaxel. These data are promising for the development of a clinically useful oral formulation of this cytostatic drug and indicate that cyclosporin A is a suitable agent for further research of this concept.
近期在小鼠身上进行的实验表明,与P-糖蛋白阻滞剂SDZ PSC 833共同给药时,口服紫杉醇后的全身暴露量显著增加(J. van Asperen等人,《英国癌症杂志》,76: 1181 - 1183, 1997)。为了便于进一步研究紫杉醇临床有效口服制剂的可行性,了解与常用且市售的P-糖蛋白阻滞剂(如环孢素A)联合治疗是否有类似效果很重要。在此,我们展示了一项关于环孢素A对口服和静脉注射紫杉醇药代动力学影响的详细研究。雌性FVB小鼠接受5或10 mg/kg紫杉醇(静脉注射或口服)加0、10或50 mg/kg环孢素A(口服)的联合治疗。给药后在多个时间点使用高效液相色谱法测定血浆中紫杉醇的浓度。相对于未用环孢素A治疗的小鼠静脉注射紫杉醇后的血浆浓度-时间曲线下面积计算,与环孢素A共同给药时,紫杉醇的口服生物利用度从9.3%提高到了67%。与10或50 mg/kg环孢素A共同治疗的小鼠中的生物利用度似乎相似。环孢素A对口服紫杉醇全身暴露的影响是清除率显著降低和摄取增加的共同结果。组织学检查显示吸收增强并非由胃肠道毒性引起。我们得出结论,环孢素A和SDZ PSC 833在增加口服紫杉醇的全身暴露方面同样有效。这些数据对于开发这种细胞毒性药物的临床有用口服制剂很有前景,并表明环孢素A是进一步研究这一概念的合适药物。