Suppr超能文献

Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats.

作者信息

Chow J W, Wilson A J, Chambers T J, Fox S W

机构信息

Department of Histopathology, St. George's Hospital Medical School, London, United Kingdom.

出版信息

J Bone Miner Res. 1998 Nov;13(11):1760-7. doi: 10.1359/jbmr.1998.13.11.1760.

Abstract

The bone formation that occurs in response to mechanical stimulation is generally considered to be a means by which bone adapts to changes in its mechanical environment. We have previously shown that the expression of genes for bone matrix proteins is maximal 72 h after a single 5-minute episode of loading of tail vertebrae of 13-week-old female rats, that the predominant increase in mineralization occurs after 3 days, and that the osteogenic response to mechanical stimulation is not dependent on prior bone resorption. We have now investigated the cellular correlates of this osteogenic response. No proliferation was detected, by pulse or flash labeling, in the trabecular bone surface cells of animals killed 1 h to 10 days after the loading episode. Ultrastructural examination revealed that most of the cells covering the trabecular bone surface of control vertebrae were flat bone lining cells. After mechanical stimulation, the trabecular bone surface cells developed ultrastructural features of osteoblastic differentiation and activity, with acquisition of an increasingly cuboidal shape, rounded nuclei, and abundant rough endoplasmic reticulum. Morphometric analysis of the mean cell area, mean nuclear area, and cell and nuclear height showed that they were all maximal 48 h after loading. By 120 h after loading, the appearances of bone surface cells had reverted to those of control vertebrae. Thus, mechanical loading appears to activate lining cells, with a temporal sequence that correlates with bone matrix production.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验