Suppr超能文献

过氧化物酶体β-氧化的新见解。对人类过氧化物酶体疾病的影响。

New insights in peroxisomal beta-oxidation. Implications for human peroxisomal disorders.

作者信息

Van Veldhoven P P

机构信息

Departement Moleculaire Celbiologie, Faculteit Geneeskunde-KU-Leuven.

出版信息

Verh K Acad Geneeskd Belg. 1998;60(3):195-214.

PMID:9803880
Abstract

In mammals including man, peroxisomes play a pivotal role in the breakdown of various carboxylates via beta-oxidation. Physiological substrates include very long chain fatty acids (e.g. lignoceric acid), medium and long chain dicarboxylic acids, certain polyunsaturated fatty acids, 2-methylbranched isoprenoid-derived fatty acids (e.g. pristanic acid), prostanoids (prostaglandins, leukotrienes thromboxanes), and bile acid intermediates (di- and trihydroxycoprostanic acid). Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and man indicate that these carboxylates, in contrast to previous belief, are degraded by separate systems composed of different enzymes. Bile acid intermediates are degraded in hepatic peroxisomes via 2-methylacyl-CoA racemase, trihydroxycoprostanoyl-CoA oxidase (in rat) or branched acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. beta-oxidation of pristanic acid can occur in all tissues and relies on the action of 2-methylacyl-CoA racemase (for the 2R-isomer), pristanoyl-CoA oxidase (in rat) or branched chain acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. The enzymes catalyzing the breakdown of straight chain fatty acids are palmitoyl-CoA oxidase, L-specific multifunctional protein 1 (MFP 1) and the dimeric thiolase. These enzymes are present in all tissues and are identical to those initially characterized in hepatic peroxisomes. Due to the presence of peroxisome targeting signals in all the above mentioned proteins, they are localised in the cytosolic or absent (due to proteolysis) in tissues of patients with a generalized peroxisome deficiency (e.g. Zellweger syndrome). In addition to these lethal inherited disorders that are caused by defects in the biogenesis of peroxisomes, a growing number of patients with peroxisomal beta-oxidation deficiencies have been described. The implications of the presence of separate beta-oxidation systems for the latter disorders is quite profound and calls, in many cases, for a reevaluation of the diagnosis of such patients.

摘要

在包括人类在内的哺乳动物中,过氧化物酶体通过β-氧化作用在各种羧酸盐的分解过程中发挥关键作用。生理底物包括极长链脂肪酸(如二十四烷酸)、中链和长链二羧酸、某些多不饱和脂肪酸、2-甲基支链异戊二烯衍生的脂肪酸(如降植烷酸)、类前列腺素(前列腺素、白三烯、血栓素)以及胆汁酸中间体(二羟基和三羟基粪甾烷酸)。对大鼠和人类中四个不同β-氧化步骤的底物谱和特异性研究表明,与之前的看法相反,这些羧酸盐是由不同酶组成的独立系统降解的。胆汁酸中间体在肝脏过氧化物酶体中通过2-甲基酰基辅酶A消旋酶、三羟基粪甾烷酰辅酶A氧化酶(在大鼠中)或支链酰基辅酶A氧化酶(在人类中)、D特异性多功能蛋白2(MFP 2)和固醇载体蛋白X/硫解酶进行降解。降植烷酸的β-氧化可在所有组织中发生,依赖于2-甲基酰基辅酶A消旋酶(针对2R-异构体)、降植烷酰辅酶A氧化酶(在大鼠中)或支链酰基辅酶A氧化酶(在人类中)、D特异性多功能蛋白2(MFP 2)和固醇载体蛋白X/硫解酶的作用。催化直链脂肪酸分解的酶是棕榈酰辅酶A氧化酶、L特异性多功能蛋白1(MFP 1)和二聚体硫解酶。这些酶存在于所有组织中,并且与最初在肝脏过氧化物酶体中鉴定的酶相同。由于上述所有蛋白质中都存在过氧化物酶体靶向信号,它们定位于细胞质中,或者在全身性过氧化物酶体缺乏症(如泽尔韦格综合征)患者的组织中不存在(由于蛋白水解)。除了这些由过氧化物酶体生物发生缺陷引起的致命遗传性疾病外,越来越多的过氧化物酶体β-氧化缺陷患者也被描述出来。对于后一种疾病而言,独立β-氧化系统的存在所带来的影响相当深远,在许多情况下需要对这类患者的诊断进行重新评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验