Mannaerts G P, Van Veldhoven P P
Afdeling Farmacologie, Faculteit Geneeskunde, Katholieke Universiteit Leuven.
Verh K Acad Geneeskd Belg. 1993;55(1):45-78.
In animal cells peroxisomes as well as mitochondria are capable of degrading lipids via beta-oxidation. Nevertheless, there are important differences between the two systems. 1) The peroxisomal and mitochondrial beta-oxidation enzymes are different proteins. 2) Peroxisomal beta-oxidation does not degrade fatty acids completely but acts as a chain-shortening system, catalyzing only a limited number of beta-oxidation cycles. 3) Peroxisomal beta-oxidation is not coupled to oxidative phosphorylation and is thus less efficient than mitochondrial beta-oxidation as far as energy conservation is concerned. 4) Peroxisomal beta-oxidation is not regulated by malonyl-CoA and--as a consequence--by feeding as opposed to starvation. Peroxisomes are responsible for the beta-oxidation of very long chain (> C20) fatty acids, dicarboxylic fatty acids, 2-methyl-branched fatty acids, prostaglandins, leukotrienes, and the carboxyl side chains of certain xenobiotics and of the bile acid intermediates di- and trihydroxycoprostanic acids. Mitochondria oxidize mainly long (C16-C20) chain fatty acids, which--because of their abundance--constitute a major source of metabolic fuel. The first step in peroxisomal beta-oxidation is catalyzed by two acyl-CoA oxidases in extrahepatic tissues and by three acyl-CoA oxidases in liver, each enzyme having its own substrate specificity. Palmitoyl-CoA oxidase and pristanoyl-CoA oxidase are found in liver and extrahepatic tissues. The former enzyme oxidizes the CoA esters of straight chain fatty acids, dicarboxylic fatty acids and prostaglandins; the latter enzyme oxidizes the CoA esters of branched fatty acids but also shows some activity towards straight chain and dicarboxylic fatty acids. Hepatic peroxisomes contain a third acyl-CoA oxidase, trihydroxycoprostanoyl-CoAA oxidase, which oxidizes the CoA esters of the bile acid intermediates di- an trihydroxycoprostanic acids. Treatment of rodents with a number of structurally diverse compounds called peroxisome proliferators, results in the proliferation of peroxisomes, especially in liver, and in the induction of the hepatic peroxisomal beta-oxidation enzymes except pristanoyl-CoA oxidase and trihydroxycoprostanoyl-CoA oxidase. There exist several inborn errors, in which peroxisomal beta-oxidation is deficient. These diseases are characterized by severe neurological symptoms. The biochemical findings in these diseases confirm the function of peroxisomal beta-oxidation as described above.
在动物细胞中,过氧化物酶体和线粒体都能够通过β-氧化降解脂质。然而,这两个系统之间存在重要差异。1)过氧化物酶体和线粒体的β-氧化酶是不同的蛋白质。2)过氧化物酶体β-氧化不能完全降解脂肪酸,而是作为一种链缩短系统,仅催化有限数量的β-氧化循环。3)就能量守恒而言,过氧化物酶体β-氧化不与氧化磷酸化偶联,因此不如线粒体β-氧化高效。4)过氧化物酶体β-氧化不受丙二酰辅酶A的调节,因此也不受进食与饥饿状态的调节。过氧化物酶体负责极长链(>C20)脂肪酸、二羧酸脂肪酸、2-甲基支链脂肪酸、前列腺素、白三烯以及某些外源性物质的羧基侧链和胆汁酸中间体二羟基和三羟基粪甾烷酸的β-氧化。线粒体主要氧化长链(C16-C20)脂肪酸,由于其含量丰富,构成了主要的代谢燃料来源。过氧化物酶体β-氧化的第一步在肝外组织中由两种酰基辅酶A氧化酶催化,在肝脏中由三种酰基辅酶A氧化酶催化,每种酶都有其自身的底物特异性。棕榈酰辅酶A氧化酶和降植烷酰辅酶A氧化酶存在于肝脏和肝外组织中。前一种酶氧化直链脂肪酸、二羧酸脂肪酸和前列腺素的辅酶A酯;后一种酶氧化支链脂肪酸的辅酶A酯,但对直链和二羧酸脂肪酸也有一些活性。肝过氧化物酶体含有第三种酰基辅酶A氧化酶,三羟基粪甾烷酰辅酶A氧化酶,它氧化胆汁酸中间体二羟基和三羟基粪甾烷酸的辅酶A酯。用多种结构不同的称为过氧化物酶体增殖剂的化合物处理啮齿动物,会导致过氧化物酶体增殖,尤其是在肝脏中,并诱导除降植烷酰辅酶A氧化酶和三羟基粪甾烷酰辅酶A氧化酶外的肝过氧化物酶体β-氧化酶。存在几种先天性缺陷,其中过氧化物酶体β-氧化功能不足。这些疾病的特征是严重的神经症状。这些疾病的生化发现证实了上述过氧化物酶体β-氧化的功能。