Suppr超能文献

c-Myc is a major mediator of the synergistic growth inhibitory effects of retinoic acid and interferon in breast cancer cells.

作者信息

Shang Y, Baumrucker C R, Green M H

机构信息

Nutrition Department, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

J Biol Chem. 1998 Nov 13;273(46):30608-13. doi: 10.1074/jbc.273.46.30608.

Abstract

The molecular signaling events involved in the inhibition of breast cancer cell growth by retinoic acid and interferon-alpha were investigated. All-trans-retinoic acid and interferon-alpha acted synergistically to inhibit growth of both the estrogen receptor-positive breast cancer cell line MCF-7 and the estrogen receptor-negative line BT-20. In MCF-7 cells, all-trans-retinoic acid potentiated the effects of interferon-alpha by up-regulating the expression of the RNA-dependent protein kinase (PKR). Consequently, the synergism between all-trans-retinoic acid and interferon-alpha down-regulated the expression of c-Myc, but not its functional partner, Max. Transfection of MCF-7 cells with a dominant-negative mutant of PKR relieved c-Myc down-regulation and cell growth inhibition, indicating that PKR is directly involved in c-Myc down-regulation and that c-Myc down-regulation is responsible for the inhibition of cell growth. Corresponding with c-Myc down-regulation, c-Myc.Max heterodimers bound to their consensus DNA sequence were undetectable in cells treated with all-trans-retinoic acid and interferon-alpha, indicating diminished c-Myc functionality. When c-Myc was overexpressed ectopically via a c-Myc expression vector, MCF-7 cells became resistant to growth inhibition by all-trans-retinoic acid plus interferon-alpha. These experiments define the following pathway as a major pathway in the synergistic growth inhibition of MCF-7 cells by all-trans-retinoic acid plus interferon-alpha: all-trans-retinoic acid + interferon-alpha --> upward arrow double-stranded RNA-dependent protein kinase --> downward arrow c-Myc --> cell growth inhibition.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验