Suppr超能文献

一种用于可视化活表皮细胞中皮质微管重排的绿色荧光蛋白标记微管相关蛋白4报告基因。

A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells.

作者信息

Marc J, Granger CL, Brincat J, Fisher DD, Kao Th, McCubbin AG, Cyr RJ

机构信息

Biological Sciences, University of Sydney, Sydney 2006, Australia.

出版信息

Plant Cell. 1998 Nov;10(11):1927-40. doi: 10.1105/tpc.10.11.1927.

Abstract

Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.

摘要

微管通过在细胞皮层中形成独特的几何阵列来影响形态发生,而这些阵列反过来又会影响纤维素微纤丝的沉积。尽管许多化学和物理因素会影响微管的方向,但目前尚不清楚伸长细胞中的皮层微管是如何维持其有序的横向阵列的,以及它们是如何重新组织成新的几何形状的。为了在活细胞中可视化这些重新定向,我们通过将哺乳动物微管相关蛋白4(MAP4)基因的微管结合结构域与绿色荧光蛋白(GFP)基因融合,构建了一个微管报告基因,并诱导其在蚕豆表皮细胞中瞬时表达重组蛋白。该报告蛋白在体内修饰微管,并在体外与微管结合。共聚焦显微镜和沿外表皮壁标记的皮层阵列的时间进程分析揭示了微管的伸长、缩短和移动;局部微管重新定向;以及整体微管重组。一些细胞中的整体微管方向围绕横轴波动,这可能是一种循环自我校正机制的结果,以在细胞伸长过程中维持净横向方向。

相似文献

引用本文的文献

7
Organelle Interactions in Plant Cells.细胞器在植物细胞中的相互作用。
Results Probl Cell Differ. 2024;73:43-69. doi: 10.1007/978-3-031-62036-2_3.
10
Visualizing the dynamics of plant energy organelles.可视化植物能量器官的动态。
Biochem Soc Trans. 2023 Dec 20;51(6):2029-2040. doi: 10.1042/BST20221093.

本文引用的文献

1
Slow axonal transport: the polymer transport model.慢速轴突运输:聚合物运输模型。
Trends Cell Biol. 1997 Oct;7(10):380-4. doi: 10.1016/S0962-8924(97)01148-3.
3
Tracheary Element Differentiation.管状分子分化
Plant Cell. 1997 Jul;9(7):1147-1156. doi: 10.1105/tpc.9.7.1147.
4
Behavior of Microtubules in Living Plant Cells.活植物细胞中微管的行为
Plant Physiol. 1996 Oct;112(2):455-461. doi: 10.1104/pp.112.2.455.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验