Duncan G E, Leipzig J N, Mailman R B, Lieberman J A
Departments of Psychiatry and Pharmacology and UNC Neuroscience Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
Brain Res. 1998 Nov 23;812(1-2):65-75. doi: 10.1016/s0006-8993(98)00926-3.
Subanesthetic doses of N-methyl-d-aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in [14C]-2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.
亚麻醉剂量的 N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,如氯胺酮和苯环己哌啶,会使精神分裂症患者出现精神症状。此外,这些药物在健康个体中会引发一系列行为效应,类似于精神分裂症的阳性、阴性和认知症状。这些发现导致了一种假说,即 NMDA 受体介导的功能下降可能是精神分裂症的一个诱发因素,甚至是致病因素。本研究考察了代表性非典型抗精神病药物(氯氮平)和典型抗精神病药物(氟哌啶醇)对氯胺酮诱导的大鼠脑内[14C]-2-脱氧葡萄糖(2-DG)摄取增加的影响。如先前所示,给予亚麻醉剂量的氯胺酮会增加特定脑区的 2-DG 摄取,这些脑区包括内侧前额叶皮质、脾后皮质、海马体、伏隔核、基底外侧杏仁核和丘脑前腹核。单独用 5 或 10 mg/kg 氯氮平预处理大鼠,对 2-DG 摄取产生的变化极小或无变化,但氯氮平完全阻断了氯胺酮在所有研究脑区诱导的 2-DG 摄取变化。与之形成鲜明对比的是,产生显著僵住反应的剂量(0.5 mg/kg)的氟哌啶醇增强而非阻断了氯胺酮诱导的 2-DG 摄取激活。这些结果在一个与精神分裂症可能相关的模型中证明了典型和非典型抗精神病药物作用之间存在显著的神经生物学差异。氯氮平对氯胺酮诱导的脑代谢激活的显著阻断表明,拮抗 NMDA 受体功能降低的后果可能有助于这种非典型抗精神病药物的卓越治疗效果。结果还表明,这种氯胺酮诱导的 2-DG 摄取变化模型对于理解非典型抗精神病药物作用的复杂神经机制可能极其有用。