Suppr超能文献

The brain renin-angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes.

作者信息

Davisson R L, Yang G, Beltz T G, Cassell M D, Johnson A K, Sigmund C D

机构信息

Departments of Internal Medicine and Physiology & Biophysics The University of Iowa College of Medicine, Iowa City, USA.

出版信息

Circ Res. 1998 Nov 16;83(10):1047-58. doi: 10.1161/01.res.83.10.1047.

Abstract

We have previously shown that mice transgenic for both the human renin and human angiotensinogen genes (RA+) exhibit appropriate tissue- and cell-specific expression of both transgenes, have 4-fold higher plasma angiotensin II (AII) levels, and are chronically hypertensive. However, the relative contribution of circulating and tissue-derived AII in causing hypertension in these animals is not known. We hypothesized that the brain renin-angiotensin system contributes to the elevated blood pressure in this model. To address this hypothesis, mean arterial pressure (MAP) and heart rate were measured in conscious, unrestrained mice after they were instrumented with intracerebroventricular cannulae and carotid arterial and jugular vein catheters. Intracerebroventricular administration of the selective AII type 1 (AT-1) receptor antagonist losartan (10 microgram, 1 microL) caused a significantly greater peak fall in MAP in RA+ mice than in nontransgenic RA- controls (-29+/-4 versus -4+/-2 mm Hg, P<0.01). To explore the mechanism of a central renin-angiotensin system-dependent hypertension in RA+ mice, we determined the relative depressor responses to intravenous administration of the ganglionic blocking agent hexamethonium (5 mg/kg) or an arginine vasopressin (AVP) V1 receptor antagonist (AVPX, 10 microgram/kg). Hexamethonium caused equal lowering of MAP in RA+ mice and controls (-46+/-3 versus -52+/-3, P>0.05), whereas AVPX caused a significantly greater fall in MAP in RA+ compared with RA- mice (-24+/-2 versus -6+/-1, P<0.01). Consistent with this was the observation that circulating AVP was 3-fold higher in RA+ mice than in control mice. These results suggest that increased activation of central AT-1 receptors, perhaps those located at sites involved in AVP release from the posterior pituitary gland, plays a role in the hypertension in RA+ mice. Furthermore, our finding that both human transgenes are expressed in brain regions of RA+ mice known to be involved in cardiovascular regulation raises the possibility that augmented local production of AII and increased activation of AT-1 receptors at these sites is involved.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验