Smith M A, Crawford J D
Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada.
J Neurophysiol. 1998 Nov;80(5):2295-315. doi: 10.1152/jn.1998.80.5.2295.
Previous theoretical investigations of the three-dimensional (3-D) angular vestibuloocular reflex (VOR) have separately modeled realistic coordinate transformations in the direct velocity path or the nontrivial problems of converting angular velocity into a 3-D orientation command. We investigated the physiological and behavioral implications of combining both approaches. An ideal VOR was simulated using both a plant model with head-fixed eye muscle actions (standard plant) and one with muscular position dependencies that facilitate Listing's law (linear plant). In contrast to saccade generation, stabilization of the eye in space required a 3-D multiplicative (tensor) interaction between the various components of velocity and position in both models: in the indirect path of the standard plant version, but also in the direct path of the linear plant version. We then incorporated realistic nonorthogonal coordinate transformations (with the use of matrices) into both models. Each now malfunctioned, predicting ocular drift/retinal destabilization during and/or after the head movement, depending on the plant version. The problem was traced to the standard multiplication tensor, which was only defined for right-handed, orthonormal coordinates. We derived two solutions to this problem: 1) separating the brain stem coordinate transformation into two (sensory and motor) transformations that reordered and "undid" the nonorthogonalities of canals and muscle transformations, thus ensuring orthogonal brain stem coordinates, or 2) computing the correct tensor components for velocity-orientation multiplication in arbitrary coordinates. Both solutions provided an ideal VOR. A similar problem occurred with partial canal or muscle damage. Altering a single brain stem transformation was insufficient because the resulting coordinate changes rendered the multiplication tensor inappropriate. This was solved by either recomputing the multiplication tensor, or recomputing the appropriate internal sensory or motor matrix to normalize and reorthogonalize the brain stem. In either case, the multiplication tensor had to be correctly matched to its coordinate system. This illustrates that neural coordinate transformations affect not only serial/parallel projections in the brain, but also lateral projections associated with computations within networks/nuclei. Consequently, a simple progression from sensory to motor coordinates may not be optimal. We hypothesize that the VOR uses a dual coordinate transformation (i.e., both sensory and motor) to optimize intermediate brain stem coordinates, and then sets the appropriate internal tensor for these coordinates. We further hypothesize that each of these processes should optimally be capable of specific, experimentally identifiable adjustments for motor learning and recovery from damage.
先前对三维(3-D)角前庭眼反射(VOR)的理论研究分别对直接速度路径中的实际坐标变换或角速度转换为三维方向指令的复杂问题进行了建模。我们研究了将这两种方法结合起来的生理和行为意义。使用具有头部固定眼肌动作的植物模型(标准植物模型)和具有促进利斯廷定律的肌肉位置依赖性的模型(线性植物模型)来模拟理想的VOR。与扫视生成不同,在空间中稳定眼睛需要在两个模型中速度和位置的各个分量之间进行三维乘法(张量)相互作用:在标准植物模型版本的间接路径中,以及在线性植物模型版本的直接路径中。然后,我们将实际的非正交坐标变换(使用矩阵)纳入两个模型中。现在每个模型都出现了故障,根据植物模型版本的不同,预测在头部运动期间和/或之后会出现眼球漂移/视网膜不稳定。问题追溯到标准乘法张量,它仅为右手正交坐标系定义。我们得出了这个问题的两个解决方案:1)将脑干坐标变换分为两个(感觉和运动)变换,对半规管和肌肉变换的非正交性进行重新排序和“消除”,从而确保脑干坐标正交,或者2)计算任意坐标中速度 - 方向乘法的正确张量分量。两种解决方案都提供了理想的VOR。当半规管或肌肉部分受损时也会出现类似问题。改变单个脑干变换是不够的,因为由此产生的坐标变化使乘法张量不合适。这可以通过重新计算乘法张量,或者重新计算适当的内部感觉或运动矩阵来归一化和重新正交化脑干来解决。在任何一种情况下,乘法张量都必须与其坐标系正确匹配。这表明神经坐标变换不仅影响大脑中的串行/并行投影,还影响与网络/核内计算相关的横向投影。因此,从感觉坐标到运动坐标的简单进展可能不是最优的。我们假设VOR使用双重坐标变换(即感觉和运动)来优化中间脑干坐标,然后为这些坐标设置适当的内部张量。我们进一步假设,这些过程中的每一个都应该能够针对运动学习和损伤恢复进行特定的、实验上可识别的最佳调整。