Suppr超能文献

鞘脂激活蛋白的加工与溶酶体消化的拓扑结构

Processing of sphingolipid activator proteins and the topology of lysosomal digestion.

作者信息

Sandhoff K, Kolter T

机构信息

Kekulé-Institut für Organische Chemie und Biochemie der Universität, Bonn, Germany.

出版信息

Acta Biochim Pol. 1998;45(2):373-84.

PMID:9821868
Abstract

Plasma membrane derived glycosphingolipids (GSLs) destined for digestion are internalized through the endocytic pathway and delivered to the lysosomes. There, GSLs are degraded by the action of exohydrolases, which are supported, in the case of GSLs with short oligosaccharide chains, by sphingolipid activator proteins (SAPs). Four of the SAPs, SAP-A to -D (also called saposins) are synthesized from a single precursor protein (pSAP). Intracellular routing of pSAP and of the GM2 activator protein is only in part dependent on mannose-6-phosphate residues. Their endocytosis occurs in a carbohydrate-independent manner. The inherited deficiencies of individual activators, the GM2 activator, SAP-B, and SAP-C, as well as the deficiency of the precursor pSAP give rise to different, neuronal, white matter or visceral sphingolipid storage diseases. The analysis of cultured fibroblasts from corresponding patients suggests a new model for the topology of endocytosis and lysosomal digestion. It supports the hypothesis that endocytosis of plasma membrane-derived lipids occurs via small intraendosomal and intralysosomal vesicles and membrane structures, that are then digested within the lysosomes. In combined activator protein deficient cells nondegradable GSLs on the surface of intralysosomal vesicles protect them against lysosomal digestion. Mice with disrupted genes for activator proteins (SAP precursor -/-, GM2A -/-) as well as disrupted genes for ganglioside GM2 degrading hexosaminidases (HEXA -/-, HEXB -/-) turned out to be useful models for known human diseases whereas double knock out mice (HEXA -/- and HEXB -/-) show a new phenotype of both mucopolysaccharidosis and gangliosidosis.

摘要

注定要被消化的质膜衍生糖鞘脂(GSLs)通过内吞途径内化并被输送到溶酶体。在那里,GSLs在外切糖苷酶的作用下被降解,对于具有短寡糖链的GSLs,鞘脂激活蛋白(SAPs)会起到辅助作用。四种SAPs,即SAP-A至-D(也称为鞘磷脂激活蛋白)由单一前体蛋白(pSAP)合成。pSAP和GM2激活蛋白的细胞内转运仅部分依赖于6-磷酸甘露糖残基。它们的内吞作用以不依赖碳水化合物的方式发生。个体激活剂、GM2激活剂、SAP-B和SAP-C的遗传性缺陷,以及前体pSAP的缺陷会导致不同的神经元、白质或内脏鞘脂贮积病。对相应患者培养的成纤维细胞的分析提示了一种关于内吞作用和溶酶体消化拓扑结构的新模型。它支持这样一种假说,即质膜衍生脂质的内吞作用通过小的内体和溶酶体内小泡及膜结构发生,然后在溶酶体内被消化。在联合激活蛋白缺陷的细胞中,溶酶体内小泡表面不可降解的GSLs保护它们不被溶酶体消化。激活蛋白基因敲除的小鼠(SAP前体-/-、GM2A-/-)以及神经节苷脂GM2降解性己糖胺酶基因敲除的小鼠(HEXA-/-、HEXB-/-)被证明是已知人类疾病的有用模型,而双基因敲除小鼠(HEXA-/-和HEXB-/-)表现出黏多糖贮积症和神经节苷脂贮积症的新表型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验