Burkhardt J K, Hüttler S, Klein A, Möbius W, Habermann A, Griffiths G, Sandhoff K
European Molecular Biology Laboratory, Heidelberg/Germany.
Eur J Cell Biol. 1997 May;73(1):10-8.
The degradation of glycosphingolipids takes place in lysosomes by action of specific exohydrolases, with the assistance of sphingolipid activator proteins (SAPs). Four of the SAPs, SAP-A to -D (also called saposins A to D), are synthesized from a single protein, the SAP-precursor (prosaposin). Deficiency in this precursor protein, a rare inherited disease in humans, results in the storage of sphingolipids with short oligosaccharide head groups within the patients' tissues, and electron microscopy revealed the accumulation of large multivesicular storage organelles. In this study we analyze the multivesicular storage organelles in cultivated fibroblasts from these patients. The results support our hypothesis that endocytosis of plasma membrane-derived lipids occurs via small intraendosomal and intralysosomal vesicles and membrane structures that are then digested within the lysosomes (Sandhoff, K., T. Kolter, Trends in Cell Biol. 6, 98-103 (1996). First, we show that the storage compartment consists of late endosomes and lysosomes by immunogold labeling for marker proteins of these organelles. The transport of endocytosed bovine serum albumin-colloidal gold or cationized ferritin into the compartment occurs with the timing expected for transport to late endocytic organelles. Second, complementation of the medium of the SAP-precursor-deficient fibroblasts with only nanomolar concentrations of purified SAP-precursor nearly completely reversed the aberrant accumulation of multivesicular structures, thereby abolishing most of the intralysosomal membrane structures. Analysis of the sphingolipid pattern of the cells after metabolic labeling with [14C]serine reveals that the cells' ability to degrade glycosphingolipids is completely restored by feeding of SAP-precursor at the same concentrations. This is the first demonstration in vivo that endocytosed SAP-precursor is processed into functional active SAPs A,- B,- C, and D and that the degradation of the vesicular structures within the lysosomes depends on the presence of the SAPs. Moreover, these studies suggest that a therapy program based on feeding purified SAP-precursor may be valuable in treating the entire family of diseases which result from the loss of one or more of the SAPs.
鞘糖脂的降解在溶酶体中通过特定外切水解酶的作用,并在鞘脂激活蛋白(SAPs)的协助下发生。其中四种SAP,即SAP-A至-D(也称为鞘aposin A至D),由单一蛋白质鞘aposin前体(prosaposin)合成。这种前体蛋白的缺乏是人类一种罕见的遗传性疾病,会导致患者组织内具有短寡糖头部基团的鞘脂蓄积,电子显微镜显示出大量多囊泡储存细胞器的积累。在本研究中,我们分析了这些患者培养的成纤维细胞中的多囊泡储存细胞器。结果支持了我们的假设,即质膜衍生脂质的内吞作用通过小的内体和溶酶体内小泡以及膜结构发生,然后这些结构在溶酶体内被消化(桑德霍夫,K.,T. 科尔特,《细胞生物学趋势》6,98 - 103(1996年))。首先,我们通过对这些细胞器的标记蛋白进行免疫金标记表明,储存区室由晚期内体和溶酶体组成。内吞的牛血清白蛋白 - 胶体金或阳离子化铁蛋白向该区域的转运发生的时间与预期转运至晚期内吞细胞器的时间一致。其次,仅用纳摩尔浓度的纯化鞘aposin前体补充鞘aposin前体缺陷型成纤维细胞的培养基,几乎完全逆转了多囊泡结构的异常积累,从而消除了大部分溶酶体内膜结构。用[14C]丝氨酸进行代谢标记后对细胞鞘脂模式的分析表明,以相同浓度添加鞘aposin前体可完全恢复细胞降解鞘糖脂的能力。这是在体内首次证明内吞的鞘aposin前体被加工成功能性活性SAPs A、B、C和D,并且溶酶体内囊泡结构的降解取决于SAPs的存在。此外,这些研究表明,基于投喂纯化鞘aposin前体的治疗方案可能对治疗因一种或多种SAPs缺失导致的整个疾病家族具有重要价值。