Suppr超能文献

COMPROC和CHECKNORM:用于在存在验证偏倚的情况下使用ROC曲线比较诊断试验准确性的计算机程序。

COMPROC and CHECKNORM: computer programs for comparing accuracies of diagnostic tests using ROC curves in the presence of verification bias.

作者信息

Zhou X H, Higgs R E

机构信息

Department of Medicine, Indiana University School of Medicine, Regenstrief Institute for Health Care, Indianapolis 46202-5200, USA.

出版信息

Comput Methods Programs Biomed. 1998 Nov;57(3):179-86. doi: 10.1016/s0169-2607(98)00060-1.

Abstract

To assess relative accuracies of two diagnostic tests, we often compare the areas under the receiver operating characteristic (ROC) curves of these two tests in a paired design. Standard methods for analyzing data from a paired design require that every patient tested has the known disease status. In practice, however, some of the patients with test results may not have verified disease status. Any analysis using only verified cases may result in verification bias. COMPROC is an easy to use program for comparing the effectiveness of two diagnostic tests based on the area under the ROC curve in the presence of verification bias. COMPROC compensates for verification bias by implementing the maximum likelihood (ML) estimation of the areas and covariance matrix of two ROC curves under the missing at random (MAR) assumption as described by Zhou (Biometrics 54 (1998) 349-366). This method assumes normality of the difference of the two ROC curve area estimators. We also describe a program CHECKNORM that does a bootstrap analysis to test this normality assumption (B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, London, 1993). COMPROC allows for the inclusion of observed covariates that may influence the decision to verify the disease status of a patient. The program computes the estimates of the area under the ROC curve for the two diagnostic tests along with the variance of each area, the covariance between the two areas, a two-sided p-value, and a confidence interval for the difference of the areas. The programs COMPROC and CHECKNORM require the scripting language Perl and the statistical software SAS and can be run on both UNIX machines as well as PCs. The use of COMPROC and CHECKNORM is illustrated in a clinical study designed to compare relative accuracies of MRI and CT in detecting pancreatic cancer.

摘要

为评估两种诊断测试的相对准确性,我们经常在配对设计中比较这两种测试的受试者工作特征(ROC)曲线下的面积。分析配对设计数据的标准方法要求每个接受测试的患者都有已知的疾病状态。然而,在实际中,一些有测试结果的患者可能没有经过核实的疾病状态。任何仅使用经核实病例的分析都可能导致核实偏倚。COMPROC是一个易于使用的程序,用于在存在核实偏倚的情况下,基于ROC曲线下的面积比较两种诊断测试的有效性。COMPROC通过在随机缺失(MAR)假设下对两条ROC曲线的面积和协方差矩阵进行最大似然(ML)估计来补偿核实偏倚,如Zhou所述(《生物统计学》54(1998)349 - 366)。该方法假设两条ROC曲线面积估计值的差异呈正态分布。我们还描述了一个程序CHECKNORM,它通过自助法分析来检验这个正态性假设(B. Efron,R.J. Tibshirani,《自助法导论》,查普曼与霍尔出版社,伦敦,1993)。COMPROC允许纳入可能影响对患者疾病状态进行核实决策的观察协变量。该程序计算两种诊断测试的ROC曲线下面积的估计值,以及每个面积的方差、两个面积之间的协方差、双侧p值和面积差异的置信区间。COMPROC和CHECKNORM程序需要脚本语言Perl以及统计软件SAS,并且可以在UNIX机器和个人电脑上运行。在一项旨在比较MRI和CT检测胰腺癌相对准确性的临床研究中展示了COMPROC和CHECKNORM的使用。

相似文献

6
Estimation of the ROC curve under verification bias.验证性偏倚下ROC曲线的估计
Biom J. 2009 Jun;51(3):475-90. doi: 10.1002/bimj.200800128.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验