Mohan I K, Das U N
Division of Internal Medicine, L.V. Prasad Eye Institute, Hyderabad, India.
Free Radic Biol Med. 1998 Nov 1;25(7):757-65. doi: 10.1016/s0891-5849(98)00129-4.
Several in vitro studies have suggested that nitric oxide may be the mediator of cytokine-induced beta-cell destruction. On the other hand, in vivo studies have given conflicting results: some studies suggesting that nitric oxide synthase inhibitors do not suppress streptozotocin-induced diabetes in mice, while others revealed that nitric oxide synthase inhibitors can reduce the incidence of insulin-dependent diabetes mellitus in rats. The results of the present study indicate that alloxan-induced diabetes in the male Wistar rats can be abrogated to a large extent by prior and simultaneous administration of the precursor of nitric oxide, L-arginine, where as NG-monomethy-L-arginine (L-NMMA), a specific inhibitor of nitric oxide synthase, can completely block the beneficial action of L-arginine. Sodium nitroprusside, a nitric oxide donor, also showed significant inhibitory effect on the severity of diabetes induced by alloxan. Alloxan treatment reduced nitric oxide generation, whereas L-arginine and sodium nitroprusside, when given along with alloxan, enhanced nitric oxide production to control values. Induction of diabetes by alloxan in the experimental animals was associated with a marked elevation in plasma lactate, ketone body, and lipid peroxide levels with a simultaneous fall in plasma insulin and nitric oxide levels. Alloxan-induced diabetes also induced a fall in the levels of anti-oxidant enzymes such as superoxide dismutase, glutathione reductase, and total glutathione, and antioxidants: vitamin E and ceruloplasmin, and an increase in glutathione peroxidase and glutathione-S-transferase. All these biochemical abnormalities and antioxidant levels have improved to near normal levels in animals treated with insulin, L-arginine, and sodium nitroprusside. From the results of the present study, it is apparent that L-arginine and nitric oxide can prevent alloxan-induced beta-cell damage, and the development of diabetes, and restore the antioxidant status to near normal levels.
多项体外研究表明,一氧化氮可能是细胞因子诱导的β细胞破坏的介质。另一方面,体内研究结果相互矛盾:一些研究表明一氧化氮合酶抑制剂不能抑制链脲佐菌素诱导的小鼠糖尿病,而其他研究则显示一氧化氮合酶抑制剂可降低大鼠胰岛素依赖型糖尿病的发病率。本研究结果表明,在雄性Wistar大鼠中,预先和同时给予一氧化氮前体L-精氨酸可在很大程度上消除四氧嘧啶诱导的糖尿病,而一氧化氮合酶的特异性抑制剂NG-单甲基-L-精氨酸(L-NMMA)可完全阻断L-精氨酸的有益作用。一氧化氮供体硝普钠对四氧嘧啶诱导的糖尿病严重程度也有显著抑制作用。四氧嘧啶处理可减少一氧化氮生成,而L-精氨酸和硝普钠与四氧嘧啶同时给予时,可将一氧化氮生成增强至对照值。实验动物中四氧嘧啶诱导的糖尿病与血浆乳酸、酮体和脂质过氧化物水平显著升高同时血浆胰岛素和一氧化氮水平下降有关。四氧嘧啶诱导的糖尿病还导致超氧化物歧化酶、谷胱甘肽还原酶和总谷胱甘肽等抗氧化酶水平以及抗氧化剂维生素E和铜蓝蛋白水平下降,同时谷胱甘肽过氧化物酶和谷胱甘肽-S-转移酶水平升高。在用胰岛素、L-精氨酸和硝普钠治疗的动物中,所有这些生化异常和抗氧化剂水平已改善至接近正常水平。从本研究结果来看,显然L-精氨酸和一氧化氮可预防四氧嘧啶诱导的β细胞损伤和糖尿病的发生,并将抗氧化状态恢复至接近正常水平。