Kooi B W, Boer M P, Kooijman S A
Faculty of Biology, Free University, Amsterdam, The Netherlands.
Math Biosci. 1998 Nov;153(2):99-124. doi: 10.1016/s0025-5564(98)10037-8.
A class of bioenergetic ecological models is studied for the dynamics of food chains with a nutrient at the base. A constant influx rate of the nutrient and a constant efflux rate for all trophic levels is assumed. Starting point is a simple model where prey is converted into predator with a fixed efficiency. This model is extended by the introduction of maintenance and energy reserves at all trophic levels, with two state variables for each trophic level, biomass and reserve energy. Then the dynamics of each population are described by two ordinary differential equations. For all models the bifurcation diagram for the bi-trophic food chain is simple. There are three important regions; a region where the predator goes to extinction, a region where there is a stable equilibrium and a region where a stable limit cycle exists. Bifurcation diagrams for tritrophic food chains are more complicated. Flip bifurcation curves mark regions where complex dynamic behaviour (higher periodic limit cycles as well as chaotic attractors) can occur. We show numerically that Shil'nikov homoclinic orbits to saddle-focus equilibria exists. The codimension 1 continuations of these orbits form a 'skeleton' for a cascade of flip and tangent bifurcations. The bifurcation analysis facilitates the study of the consequences of the population model for the dynamic behaviour of a food chain. Although the predicted transient dynamics of a food chain may depend sensitively on the underlying model for the populations, the global picture of the bifurcation diagram for the different models is about the same.
研究了一类生物能量生态模型,用于描述以一种营养物质为基础的食物链动态。假设营养物质的流入速率恒定,且所有营养级的流出速率恒定。起点是一个简单模型,其中猎物以固定效率转化为捕食者。通过在所有营养级引入维持和能量储备来扩展该模型,每个营养级有两个状态变量,即生物量和储备能量。然后,每个种群的动态由两个常微分方程描述。对于所有模型,双营养级食物链的分岔图都很简单。有三个重要区域:捕食者灭绝的区域、存在稳定平衡的区域以及存在稳定极限环的区域。三营养级食物链的分岔图更为复杂。翻转分岔曲线标记了可能出现复杂动态行为(更高周期的极限环以及混沌吸引子)的区域。我们通过数值计算表明,存在到鞍点 - 焦点平衡点的希利尼科夫同宿轨道。这些轨道的余维 1 延拓形成了一系列翻转和切向分岔的“骨架”。分岔分析有助于研究种群模型对食物链动态行为的影响。尽管预测的食物链瞬态动态可能敏感地依赖于种群的基础模型,但不同模型的分岔图全局情况大致相同。