Garsin D A, Duncan L, Paskowitz D M, Losick R
The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
J Mol Biol. 1998 Dec 4;284(3):569-78. doi: 10.1006/jmbi.1998.2202.
The activity of the developmental transcription factor sigmaF in the spore-forming bacterium Bacillus subtilis is controlled by SpoIIAB, which sequesters sigmaF in an inactive complex. sigmaF is released from the SpoIIAB-sigmaF complex by the action of SpoIIAA, which triggers the dissociation of the complex. SpoIIAB is also a protein kinase that phosphorylates SpoIIAA on serine residue 58 (S58). This phosphorylation inactivates SpoIIAA and thus indirectly prevents the activation of sigmaF. Here, we report the identification of a patch of amino acid residues located in the vicinity of the adenosine nucleotide binding pocket of SpoIIAB that is required for the phosphorylation of SpoIIAA. A lysine substitution (E104K) at one of these residues (Glu104) markedly impaired the capacity of SpoIIAB to phosphorylate SpoIIAA in vitro as well as during sporulation. Kinetic analysis and evidence from the construction of alanine substitution mutants indicates that the side-chains of these amino acids could be contact sites for the SpoIIAA substrate during the phosphorylation reaction. Importantly, E104K and other kinase mutants blocked the activation of sigmaF during sporulation. This is paradoxical, because a mutant of SpoIIAA (S58A) that cannot be phosphorylated is known to cause higher than normal levels of sigmaF activity during sporulation. In resolution of this paradox, we present biochemical evidence indicating that SpoIIAA directly attacks the SpoIIAB-sigmaF complex and that SpoIIAA is phosphorylated as a result of this reaction. Consistent with this idea, mutations impairing kinase function of SpoIIAB were found to be epistatic to a mutation causing the S58A substitution in SpoIIAA; that is, cells producing mutant forms of both proteins were blocked in the activation of sigmaF. We conclude that phosphorylation of SpoIIAA plays a dual role in the sigmaF pathway, and that the kinase function of SpoIIAB is required for the activation as well as the inhibition of sigmaF during sporulation.
在形成芽孢的细菌枯草芽孢杆菌中,发育转录因子σF的活性受SpoIIAB调控,SpoIIAB将σF隔离在无活性复合物中。通过SpoIIAA的作用,σF从SpoIIAB-σF复合物中释放出来,SpoIIAA触发该复合物的解离。SpoIIAB也是一种蛋白激酶,可使SpoIIAA的丝氨酸残基58(S58)磷酸化。这种磷酸化使SpoIIAA失活,从而间接阻止σF的激活。在此,我们报告了在SpoIIAB腺苷核苷酸结合口袋附近鉴定出一片氨基酸残基,这是SpoIIAA磷酸化所必需的。这些残基之一(Glu104)的赖氨酸替代(E104K)在体外以及芽孢形成过程中均显著损害了SpoIIAB使SpoIIAA磷酸化的能力。动力学分析以及丙氨酸替代突变体构建的证据表明,这些氨基酸的侧链可能是磷酸化反应过程中SpoIIAA底物的接触位点。重要的是,E104K和其他激酶突变体在芽孢形成过程中阻止了σF的激活。这看似矛盾,因为已知不能被磷酸化的SpoIIAA突变体(S58A)在芽孢形成过程中会导致高于正常水平的σF活性。为了解决这一矛盾,我们提供了生化证据表明SpoIIAA直接攻击SpoIIAB-σF复合物,并且SpoIIAA因该反应而被磷酸化。与此观点一致,发现损害SpoIIAB激酶功能的突变对导致SpoIIAA中S58A替代的突变具有上位性;也就是说,产生这两种蛋白质突变形式的细胞在σF激活过程中受阻。我们得出结论,SpoIIAA的磷酸化在σF途径中起双重作用,并且SpoIIAB的激酶功能在芽孢形成过程中对σF的激活和抑制都是必需的。