Suppr超能文献

天然水体和富集培养物中二溴甲烷和甲基溴的细菌氧化作用

Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures.

作者信息

Goodwin KD, Schaefer JK, Oremland RS

机构信息

United States Geological Survey, Menlo Park, California 94025, USA.

出版信息

Appl Environ Microbiol. 1998 Dec;64(12):4629-36. doi: 10.1128/AEM.64.12.4629-4636.1998.

Abstract

Bacterial oxidation of 14CH2Br2 and 14CH3Br was measured in freshwater, estuarine, seawater, and hypersaline-alkaline samples. In general, bacteria from the various sites oxidized similar amounts of 14CH2Br2 and comparatively less 14CH3Br. Bacterial oxidation of 14CH3Br was rapid in freshwater samples compared to bacterial oxidation of 14CH3Br in more saline waters. Freshwater was also the only site in which methyl fluoride-sensitive bacteria (e.g., methanotrophs or nitrifiers) governed brominated methane oxidation. Half-life calculations indicated that bacterial oxidation of CH2Br2 was potentially significant in all of the waters tested. In contrast, only in freshwater was bacterial oxidation of CH3Br as fast as chemical removal. The values calculated for more saline sites suggested that bacterial oxidation of CH3Br was relatively slow compared to chemical and physical loss mechanisms. However, enrichment cultures demonstrated that bacteria in seawater can rapidly oxidize brominated methanes. Two distinct cultures of nonmethanotrophic methylotrophs were recovered; one of these cultures was able to utilize CH2Br2 as a sole carbon source, and the other was able to utilize CH3Br as a sole carbon source.

摘要

在淡水、河口、海水和高盐碱性样品中测定了细菌对(^{14}CH_2Br_2)和(^{14}CH_3Br)的氧化作用。总体而言,来自不同地点的细菌氧化(^{14}CH_2Br_2)的量相似,而氧化(^{14}CH_3Br)的量相对较少。与在盐度较高的水中细菌对(^{14}CH_3Br)的氧化作用相比,淡水样品中细菌对(^{14}CH_3Br)的氧化作用较快。淡水也是唯一由对甲基氟敏感的细菌(如甲烷氧化菌或硝化细菌)主导溴化甲烷氧化的地点。半衰期计算表明,在所有测试的水体中,细菌对(CH_2Br_2)的氧化作用可能具有重要意义。相比之下,只有在淡水中细菌对(CH_3Br)的氧化作用与化学去除作用一样快。在盐度较高的地点计算得出的值表明,与化学和物理损失机制相比,细菌对(CH_3Br)的氧化作用相对较慢。然而,富集培养表明海水中的细菌能够快速氧化溴化甲烷。分离出了两种不同的非甲烷氧化甲基营养菌培养物;其中一种培养物能够将(CH_2Br_2)作为唯一碳源利用,另一种能够将(CH_3Br)作为唯一碳源利用。

相似文献

1
Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures.
Appl Environ Microbiol. 1998 Dec;64(12):4629-36. doi: 10.1128/AEM.64.12.4629-4636.1998.
3
Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
Appl Environ Microbiol. 2001 Dec;67(12):5437-43. doi: 10.1128/AEM.67.12.5437-5443.2001.
4
Facultative and obligate methanotrophs how to identify and differentiate them.
Methods Enzymol. 2011;495:31-44. doi: 10.1016/B978-0-12-386905-0.00003-6.
5
Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
Global Biogeochem Cycles. 1996 Mar;10(1):175-90. doi: 10.1029/95gb02743.
6
Production of Dibromomethane and Changes in the Bacterial Community in Bromoform-Enriched Seawater.
Microbes Environ. 2019 Jun 27;34(2):215-218. doi: 10.1264/jsme2.ME18027. Epub 2019 Feb 15.
8
Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters.
FEMS Microbiol Lett. 2012 Sep;334(2):111-8. doi: 10.1111/j.1574-6968.2012.02624.x. Epub 2012 Jul 9.
9
Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria.
Environ Microbiol. 2005 Jun;7(6):839-52. doi: 10.1111/j.1462-2920.2005.00757.x.
10
Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.
Environ Sci Technol. 2016 Apr 5;50(7):3617-25. doi: 10.1021/acs.est.5b05798. Epub 2016 Mar 14.

引用本文的文献

1
Seasonal Changes in Microbial Dissolved Organic Sulfur Transformations in Coastal Waters.
Microorganisms. 2020 Feb 27;8(3):337. doi: 10.3390/microorganisms8030337.
2
Microbial acetone oxidation in coastal seawater.
Front Microbiol. 2014 May 26;5:243. doi: 10.3389/fmicb.2014.00243. eCollection 2014.
3
Microbial methanol uptake in northeast Atlantic waters.
ISME J. 2011 Apr;5(4):704-16. doi: 10.1038/ismej.2010.169. Epub 2010 Nov 11.
5
Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
Appl Environ Microbiol. 2001 Dec;67(12):5437-43. doi: 10.1128/AEM.67.12.5437-5443.2001.
6
Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria.
Proc Natl Acad Sci U S A. 2001 May 8;98(10):5833-7. doi: 10.1073/pnas.101129798.
9
Oxidation of methyl halides by the facultative methylotroph strain IMB-1.
Appl Environ Microbiol. 1999 Nov;65(11):5035-41. doi: 10.1128/AEM.65.11.5035-5041.1999.

本文引用的文献

1
Prediction of buffer catalysis in field and laboratory studies of pollutant hydrolysis reactions.
Environ Sci Technol. 1983 Nov 1;17(11):635-42. doi: 10.1021/es00117a003.
2
A Net Sink for Atmospheric CH3Br in the East Pacific Ocean.
Science. 1995 Feb 17;267(5200):1002-5. doi: 10.1126/science.267.5200.1002.
3
Bacterial oxidation of methyl bromide in fumigated agricultural soils.
Appl Environ Microbiol. 1997 Nov;63(11):4346-54. doi: 10.1128/aem.63.11.4346-4354.1997.
4
Methanol improves methane uptake in starved methanotrophic microorganisms.
Appl Environ Microbiol. 1998 Mar;64(3):1143-6. doi: 10.1128/AEM.64.3.1143-1146.1998.
5
Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils.
Appl Environ Microbiol. 1998 Mar;64(3):1091-8. doi: 10.1128/AEM.64.3.1091-1098.1998.
7
Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation.
Appl Environ Microbiol. 1992 Sep;58(9):2983-92. doi: 10.1128/aem.58.9.2983-2992.1992.
8
Strain IMB-1, a novel bacterium for the removal of methyl bromide in fumigated agricultural soils.
Appl Environ Microbiol. 1998 Aug;64(8):2899-905. doi: 10.1128/AEM.64.8.2899-2905.1998.
9
Methanotrophic bacteria.
Microbiol Rev. 1996 Jun;60(2):439-71. doi: 10.1128/mr.60.2.439-471.1996.
10
Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils.
Appl Environ Microbiol. 1994 Oct;60(10):3640-6. doi: 10.1128/aem.60.10.3640-3646.1994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验