Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein J M
Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium.
J Biol Chem. 1998 Dec 11;273(50):33311-9. doi: 10.1074/jbc.273.50.33311.
In the yeast Saccharomyces cerevisiae, trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP), which convert glucose 6-phosphate plus UDP-glucose to trehalose, are part of the trehalose synthase complex. In addition to the TPS1 (previously also called GGS1, CIF1, BYP1, FDP1, GLC6, and TSS1) and TPS2 (also described as HOG2 and PFK3) gene products, this complex also contains a regulatory subunit encoded by TSL1. We have constructed a set of isogenic strains carrying all possible combinations of deletions of these three genes and of TPS3, a homologue of TSL1 identified by systematic sequencing. Deletion of TPS1 totally abolished TPS activity and measurable trehalose, whereas deletion of any of the other genes in most cases reduced both. Similarly, deletion of TPS2 completely abolished TPP activity, and deletion of any of the other genes resulted in a reduction of this activity. Therefore, it appears that all subunits are required for optimal enzymatic activity. Since we observed measurable trehalose in strains lacking all but the TPS1 gene, some phosphatase activity in addition to Tps2 can hydrolyze trehalose 6-phosphate. Deletion of TPS3, in particular in a tsl1Delta background, reduced both TPS and TPP activities and trehalose content. Deletion of TPS2, TSL1, or TPS3 and, in particular, of TSL1 plus TPS3 destabilized the trehalose synthase complex. We conclude that Tps3 is a fourth subunit of the complex with functions partially redundant to those of Tsl1. Among the four genes studied, TPS1 is necessary and sufficient for growth on glucose and fructose. Even when overproduced, none of the other subunits could take over this function of Tps1 despite the homology shared by all four proteins. A portion of Tps1 appears to occur in a form not bound by the complex. Whereas TPS activity in the complex is inhibited by Pi, Pi stimulates the monomeric form of Tps1. We discuss the possible role of differentially regulated Tps1 in a complex-bound or monomeric form in light of the requirement of Tps1 for trehalose production and for growth on glucose and fructose.
在酿酒酵母中,将6-磷酸葡萄糖和UDP-葡萄糖转化为海藻糖的海藻糖-6-磷酸合酶(TPS)和海藻糖-6-磷酸磷酸酶(TPP)是海藻糖合酶复合物的一部分。除了TPS1(以前也称为GGS1、CIF1、BYP1、FDP1、GLC6和TSS1)和TPS2(也称为HOG2和PFK3)基因产物外,该复合物还包含由TSL1编码的一个调节亚基。我们构建了一组同基因菌株,这些菌株携带这三个基因以及通过系统测序鉴定出的TSL1同源物TPS3的所有可能缺失组合。TPS1的缺失完全消除了TPS活性和可测量的海藻糖,而在大多数情况下,其他任何一个基因的缺失都会使两者降低。同样,TPS2的缺失完全消除了TPP活性,其他任何一个基因的缺失都会导致该活性降低。因此,似乎所有亚基对于最佳酶活性都是必需的。由于我们在除了TPS1基因外其他基因均缺失的菌株中观察到了可测量的海藻糖,所以除了Tps2外,一些磷酸酶活性也可以水解6-磷酸海藻糖。TPS3的缺失,特别是在tsl1Δ背景下,降低了TPS和TPP活性以及海藻糖含量。TPS2、TSL1或TPS3的缺失,特别是TSL1加TPS3的缺失,使海藻糖合酶复合物不稳定。我们得出结论,Tps3是该复合物的第四个亚基,其功能与Tsl1部分冗余。在所研究的四个基因中,TPS1对于在葡萄糖和果糖上生长是必需且充分的。即使过量表达,尽管所有四种蛋白质具有同源性,但其他亚基都无法取代Tps1的这一功能。一部分Tps1似乎以未与复合物结合的形式存在。虽然复合物中的TPS活性受到Pi的抑制,但Pi刺激Tps1的单体形式。我们根据Tps1对海藻糖产生以及在葡萄糖和果糖上生长的需求,讨论了以复合物结合形式或单体形式存在的差异调节的Tps1的可能作用。