Suppr超能文献

Duodenal nutrient infusions differentially affect sham feeding and Fos expression in rat brain stem.

作者信息

Phifer C B, Berthoud H R

机构信息

Louisiana Scholars' College, Northwestern State University of Louisiana, Natchitoches 71497, Louisiana.

出版信息

Am J Physiol. 1998 Jun;274(6):R1725-33. doi: 10.1152/ajpregu.1998.274.6.R1725.

Abstract

Duodenal infusions of macronutrients inhibit sham and normal feeding. Neural substrates of this response were studied by infusing glucose, linoleic acid, an amino acid mixture, saline, or water into the duodenum of unanesthetized rats and then measuring sham feeding of 30% sucrose or Fos expression in the dorsal vagal complex. Linoleic acid and amino acids (both 1.5 kcal) and glucose (4.5 kcal) suppressed sham feeding relative to control infusions, and all three macronutrients triggered Fos expression in the nucleus of the solitary tract and area postrema. Although there were significant quantitative differences, the subnuclear distribution pattern of Fos-expressing neurons was not different for the three macronutrients and was largely localized to the medial, dorsomedial, and commissural subnuclei of the nucleus of the solitary tract and the area postrema. Linoleic acid suppressed intake and stimulated Fos expression similarly to glucose infusions of three times the caloric value. Amino acids strongly suppressed sham feeding but triggered relatively little Fos expression. These results indicate that the intake-suppressing potency of duodenal macronutrients is dependent on nutrient type, rather than simply caloric value, and that amino acids, although potent inducers of satiety, affect ingestion by processes different from those subserving lipids and carbohydrates. Furthermore, the similar patterns of neuronal activation after different duodenal infusions may indicate a large degree of convergence at the level of primary and second-order sensory neurons, whereas the distinctly different pattern obtained earlier with gastric distension indicates partially separate neural pathways for satiety signals generated by duodenal nutrients and gastric mechanoreceptors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验