Opat A S, Puthalakath H, Burke J, Gleeson P A
Department of Pathology and Immunology, Monash University Medical School, Commercial Road, Prahran, Victoria 3181, Australia.
Biochem J. 1998 Dec 15;336 ( Pt 3)(Pt 3):593-8. doi: 10.1042/bj3360593.
The analysis of mutations associated with glycosylation-defective cell lines has the potential for identifying critical residues associated with the activities of enzymes involved in the biosynthesis of glycoconjugates. A ricin-resistant (RicR) baby hamster kidney (BHK) cell mutant, clone RicR14, has a deficiency in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and as a consequence is unable to synthesize complex and hybrid N-glycans. Here we show that RicR14 cells transfected with wild-type GlcNAc-TI regained the ability to synthesize complex N-glycans, demonstrating that the glycosylation defect of RicR14 cells is due solely to the lack of GlcNAc-TI activity. With the use of specific antibodies to GlcNAc-TI, RicR14 cells were shown to synthesize an inactive GlcNAc-TI protein that is correctly localized to the Golgi apparatus. We have cloned and sequenced the open reading frame of GlcNAc-TI from parental BHK and RicR14 cells. A comparison of several RicR14 cDNA clones with the parental BHK GlcNAc-TI sequence indicated the presence of two different RicR14 cDNA species. One contained a premature stop codon at position +81, whereas the second contained a point mutation in the catalytic domain of GlcNAc-TI resulting in the amino acid substitution Gly320-->Asp. The introduction of a Gly320-->Asp mutation into wild-type rabbit GlcNAc-TI resulted in a complete loss of activity; the GlcNAc-TI mutant was correctly localized to the Golgi, indicating that the inactive GlcNAc-TI protein was transport-competent. Gly320 is conserved in GlcNAc-TI from all species so far examined. Overall these results demonstrate that Gly320 is a critical residue for GlcNAc-TI activity.
对与糖基化缺陷细胞系相关的突变进行分析,有可能鉴定出与糖缀合物生物合成中所涉及酶的活性相关的关键残基。一种抗蓖麻毒素(RicR)的幼仓鼠肾(BHK)细胞突变体,克隆RicR14,其N - 乙酰葡糖胺基转移酶I(GlcNAc - TI)活性存在缺陷,因此无法合成复杂型和杂合型N - 聚糖。在此我们表明,用野生型GlcNAc - TI转染的RicR14细胞恢复了合成复杂型N - 聚糖的能力,这表明RicR14细胞的糖基化缺陷完全是由于缺乏GlcNAc - TI活性所致。利用针对GlcNAc - TI的特异性抗体,发现RicR14细胞合成了一种无活性的GlcNAc - TI蛋白,该蛋白正确定位于高尔基体。我们已经从亲本BHK细胞和RicR14细胞中克隆并测序了GlcNAc - TI的开放阅读框。将几个RicR14 cDNA克隆与亲本BHK GlcNAc - TI序列进行比较,发现存在两种不同的RicR14 cDNA种类。一种在 +81位含有一个提前终止密码子,而另一种在GlcNAc - TI的催化结构域中含有一个点突变,导致氨基酸替换Gly320→Asp。将Gly320→Asp突变引入野生型兔GlcNAc - TI中导致活性完全丧失;GlcNAc - TI突变体正确定位于高尔基体,表明无活性的GlcNAc - TI蛋白具有运输能力。到目前为止,在所有已检测物种的GlcNAc - TI中,Gly320都是保守的。总体而言,这些结果表明Gly320是GlcNAc - TI活性的关键残基。