Suppr超能文献

Domain motion between the regulatory light chain and the nucleotide site in skeletal myosin.

作者信息

Xu J, Root D D

机构信息

Division of Biochemistry, University of North Texas, Denton, Texas, 76203, USA.

出版信息

J Struct Biol. 1998 Oct;123(2):150-61. doi: 10.1006/jsbi.1998.4023.

Abstract

Resonance energy transfer probes were attached to skeletal myosin's nucleotide site and regulatory light chain (RLC) to examine nucleotide analog-induced structural transitions. A novel chemical modification of the RLC was developed for specific labeling of the basic N-terminus without affecting myosin ATPase activity. The modification allows attachment of a terbium chelate to rabbit skeletal RLC and was mapped by tryptic digestion to an amino group on the six N-terminal RLC residues. The use of terbium as a resonance energy transfer donor allowed the determination of the efficiency of energy transfer by sensitized emission lifetime measurements that practically eliminate background from unlabeled donor and acceptor sites as well as potential orientation factor artifacts in the calculation of the critical transfer distance. The nucleotide site was labeled with a functional CY3-labeled nucleotide as an energy transfer acceptor. Of the nucleotide states examined, ADP, ADP. vanadate, ADP. A1F4, and ADP. BeFx, the difference between the ADP and ADP. vanadate states was greatest (0.4-nm change), but was not considered to be statistically significant. The binding of actin to ADP-myosin also failed to produce a statistically significant change (0.3-nm change). These results are not consistent with a number of versions of the swinging lever arm hypothesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验