Suppr超能文献

艾德卡无所不能——社会医学专家证词中的机器语音识别

[Edeka does all--machine speech recognition in social medicine expert testimony].

作者信息

Michel E, Michel E M, Hägele W, Zernikow B

机构信息

Medizinischer Dienst der Krankenversicherung Westfalen-Lippe, Münster.

出版信息

Gesundheitswesen. 1998 Oct;60(10):567-71.

PMID:9844291
Abstract

UNLABELLED

Automatic speech recognition systems are already being used in spheres employing a restricted vocabulary.

OBJECTIVE

Our aim was to investigate whether low-cost speech recognition software for PC is capable of being usefully employed in the sphere of sociomedicine.

MATERIALS AND METHODS

To this end 34 representative pages of text (a total of 11,000 words) taken from expertises on cases of suspected medical malpractice (many different subspecialties) were dictated using IBM's "Voice Type Simply Speaking" software. Having completed a page, the resulting error rate was recorded, and the text was corrected before we proceeded with the dictation. Finally, 3 pages of text were re-dictated and the resulting error rate determined.

RESULTS

The error rate in the previously unknown text ranged between 10 and 23 per cent (mean 15.9%) without any significant reduction during the training phase, while that in the re-dictated text was drastically reduced to less than 3 per cent. It became evident that once a word was corrected the system hardly ever repeated that particular mistake.

CONCLUSION

The system's poor performance on unknown text and the missing reduction in the error rate during the training phase are obviously not due to any incompetence of the system but to the huge amount of technical jargon in the scope of medical writing. To attain an acceptable performance we suggest to either extend the training phase, or, preferably, to confine the application to a single medical subspecialty. Its overwhelming learning ability makes the system a serious candidate typist in the sphere of sociomedicine.

摘要

未标注

自动语音识别系统已在词汇受限的领域中得到应用。

目的

我们的目的是研究用于个人电脑的低成本语音识别软件是否能够有效地应用于社会医学领域。

材料与方法

为此,我们使用IBM的“简单语音打字”软件听写了34页具有代表性的文本(共计11000个单词),这些文本摘自医疗事故疑似案例的专家意见(涉及许多不同的亚专业)。完成一页文本听写后,记录产生的错误率,并在继续听写之前对文本进行校正。最后,重新听写3页文本并确定产生的错误率。

结果

在之前未知的文本中,错误率在10%至23%之间(平均为15.9%),在训练阶段没有显著降低,而在重新听写的文本中,错误率大幅降至3%以下。很明显,一旦某个单词被校正,系统几乎不会再重复那个特定的错误。

结论

该系统在未知文本上表现不佳,且在训练阶段错误率没有降低,这显然不是由于系统本身的无能,而是由于医学写作范围内大量的专业术语。为了获得可接受的性能,我们建议要么延长训练阶段,要么更好的做法是将应用范围限制在单一医学亚专业。其强大的学习能力使该系统成为社会医学领域中一个有竞争力的打字替代方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验