Suppr超能文献

Effects of dietary manganese on arterial glycosaminoglycan metabolism in Sprague-Dawley rats.

作者信息

Yang P, Klimis-Tavantzis D J

机构信息

Department of Food Science and Human Nutrition, University of Maine, Orono, USA.

出版信息

Biol Trace Elem Res. 1998 Summer;64(1-3):275-88. doi: 10.1007/BF02783343.

Abstract

The objectives of this study were to determine whether dietary manganese deficiency alters total glycosaminoglycan (GAG) concentration and composition and glycosyltransferase activity in rat aortas. Sprague-Dawley rats were fed either a manganese-deficient or a manganese-sufficient diet. Arterial GAGs were isolated and quantified by measuring uronic acid content. The individual GAGs were separated and quantified with cellulose acetate electrophoresis. The activity of the enzyme galactosyltransferase I was measured using a 100,000 g particulate fraction and 4-methylumbelliferylxyloside (Xyl-MU) as an acceptor. There was a significant decrease (p < or = 0.05) in uronic acid content in the manganese-deficient (1.18 +/- 0.08 mg/g) rat aortas as compared with the manganese-sufficient (1.59 +/- 0.10 mg/g) ones. Chondroitin sulfate and heparan sulfate concentrations were decreased by 38% (p < or = 0.01) and 36% (p < or = 0.05), respectively, in the manganese-deficient rat aortas. The incorporation of UDP-galactose to acceptors by the manganese-deficient rat aorta preparations was increased by 28% as compared to the manganese-sufficient preparations. These results indicate that manganese is involved in arterial GAG metabolism by affecting the enzyme galactosyltransferase and that changes in GAG concentration and composition with manganese deficiency may ultimately affect arterial wall integrity and subsequently cardiovascular health. This is the first work to demonstrate that manganese nutrition is important in arterial GAG metabolism.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验