Suppr超能文献

形状类别学习中的连通性与部分关系整合

Connectedness and part-relation integration in shape category learning.

作者信息

Saiki J, Hummel J E

机构信息

Nagoya University, Japan.

出版信息

Mem Cognit. 1998 Nov;26(6):1138-56. doi: 10.3758/bf03201191.

Abstract

We investigated the role of connectedness in the use of part-relation conjunctions for object category learning. Participants learned categories of two-part objects defined by the shape of one part and its location relative to the other (part-relation conjunctions). The topological relationship between the parts (connected, separated, or embedded) varied between participants but was invariant for any given participant. In Experiment 1, category learning was faster and more accurate when an object's parts were connected than when they were either separated or embedded. Subsequent experiments showed that this effect is not due to conscious strategies, differences in the salience of the individual attributes, or differences in the integrality/separability of dimensions across stimuli. The results suggest that connectedness affects the integration of parts with their relations in object category learning.

摘要

我们研究了关联性在使用部分-关系连词进行物体类别学习中的作用。参与者学习由一个部分的形状及其相对于另一个部分的位置所定义的两部分物体的类别(部分-关系连词)。各部分之间的拓扑关系(相连、分离或嵌入)在参与者之间有所不同,但对于任何给定参与者而言是不变的。在实验1中,当物体的各部分相连时,类别学习比各部分分离或嵌入时更快且更准确。后续实验表明,这种效应并非由于有意识的策略、个体属性显著性的差异或不同刺激维度的整体性/可分离性的差异所致。结果表明,关联性在物体类别学习中会影响部分与其关系的整合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验