Suppr超能文献

枯草芽孢杆菌clpC操纵子的第一个基因ctsR,编码其自身操纵子及其他III类热休克基因的负调控因子。

The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes.

作者信息

Krüger E, Hecker M

机构信息

Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany.

出版信息

J Bacteriol. 1998 Dec;180(24):6681-8. doi: 10.1128/JB.180.24.6681-6688.1998.

Abstract

The Bacillus subtilis clpC operon is regulated by two stress induction pathways relying on either sigmaB or a class III stress induction mechanism acting at a sigmaA-like promoter. When the clpC operon was placed under the control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Pspac promoter, dramatic repression of the natural clpC promoters fused to a lacZ reporter gene was noticed after IPTG induction. This result strongly indicated negative regulation of the clpC operon by one of its gene products. Indeed, the negative regulator could be identified which is encoded by the first gene of the clpC operon, ctsR, containing a predicted helix-turn-helix DNA-binding motif. Deletion of ctsR abolished the negative regulation and resulted in high expression of both the clpC operon and the clpP gene under nonstressed conditions. Nevertheless, a further increase in clpC and clpP mRNA levels was observed after heat shock, even in the absence of sigmaB, suggesting a second induction mechanism at the vegetative promoter. Two-dimensional gel analysis and mRNA studies showed that the expression of other class III stress genes was at least partially influenced by the ctsR deletion. Studies with different clpC promoter fragments either fused to the reporter gene bgaB or used in gel mobility shift experiments with the purified CtsR protein revealed a possible target region where the repressor seemed to bind in vivo and in vitro. Our data demonstrate that the CtsR protein acts as a global repressor of the clpC operon, as well as other class III heat shock genes, by preventing unstressed transcription from either the sigmaB- or sigmaA-dependent promoter and might be inactivated or dissociate under inducing stress conditions.

摘要

枯草芽孢杆菌的clpC操纵子受两种应激诱导途径调控,一种依赖于σB,另一种是在类似σA的启动子处起作用的III类应激诱导机制。当clpC操纵子置于异丙基-β-D-硫代半乳糖苷(IPTG)诱导型Pspac启动子的控制下时,IPTG诱导后,与lacZ报告基因融合的天然clpC启动子受到显著抑制。这一结果强烈表明其基因产物之一对clpC操纵子存在负调控。实际上,可以鉴定出负调控因子,它由clpC操纵子的第一个基因ctsR编码,ctsR含有一个预测的螺旋-转角-螺旋DNA结合基序。删除ctsR消除了负调控,导致在非应激条件下clpC操纵子和clpP基因均高表达。然而,即使在没有σB的情况下,热休克后仍观察到clpC和clpP mRNA水平进一步升高,这表明在营养型启动子处存在第二种诱导机制。二维凝胶分析和mRNA研究表明,其他III类应激基因的表达至少部分受ctsR缺失的影响。对与报告基因bgaB融合或用于与纯化的CtsR蛋白进行凝胶迁移率变动实验的不同clpC启动子片段的研究揭示了一个可能的靶区域,阻遏物似乎在体内和体外都结合于此。我们的数据表明,CtsR蛋白通过阻止从σB或σA依赖的启动子进行非应激转录,从而作为clpC操纵子以及其他III类热休克基因的全局阻遏物,并且可能在诱导应激条件下失活或解离。

相似文献

2
CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes.
Mol Microbiol. 2000 Feb;35(4):800-11. doi: 10.1046/j.1365-2958.2000.01752.x.
3
The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C.
Mol Microbiol. 2000 Oct;38(2):335-47. doi: 10.1046/j.1365-2958.2000.02124.x.
5
Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival.
J Bacteriol. 2001 Dec;183(24):7295-307. doi: 10.1128/JB.183.24.7295-7307.2001.
7
ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression.
Microbiology (Reading). 2000 Jun;146 ( Pt 6):1447-1455. doi: 10.1099/00221287-146-6-1447.
9
ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
Mol Microbiol. 1999 May;32(3):581-93. doi: 10.1046/j.1365-2958.1999.01374.x.
10
CtsR is the master regulator of stress response gene expression in Oenococcus oeni.
J Bacteriol. 2005 Aug;187(16):5614-23. doi: 10.1128/JB.187.16.5614-5623.2005.

引用本文的文献

2
3
Structural insights into the regulation of protein-arginine kinase McsB by McsA.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2320312121. doi: 10.1073/pnas.2320312121. Epub 2024 Apr 16.
4
Induction of the CtsR regulon improves Xylanase production in Bacillus subtilis.
Microb Cell Fact. 2023 Nov 9;22(1):231. doi: 10.1186/s12934-023-02239-3.
5
(p)ppGpp - an important player during heat shock response.
Microlife. 2023 Apr 6;4:uqad017. doi: 10.1093/femsml/uqad017. eCollection 2023.
6
Identification of a Putative CodY Regulon in the Gram-Negative Phylum Synergistetes.
Int J Mol Sci. 2022 Jul 18;23(14):7911. doi: 10.3390/ijms23147911.
8
The Involvement of the McsB Arginine Kinase in Clp-Dependent Degradation of the MgsR Regulator in .
Front Microbiol. 2020 May 12;11:900. doi: 10.3389/fmicb.2020.00900. eCollection 2020.
9
The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis.
PLoS Genet. 2020 Mar 16;16(3):e1008275. doi: 10.1371/journal.pgen.1008275. eCollection 2020 Mar.
10
Comparative Whole Cell Proteomics of at Different Growth Temperatures.
J Microbiol Biotechnol. 2020 Feb 28;30(2):259-270. doi: 10.4014/jmb.1911.11027.

本文引用的文献

4
Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon.
J Bacteriol. 1998 Jun;180(11):2895-900. doi: 10.1128/JB.180.11.2895-2900.1998.
5
Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis.
J Bacteriol. 1998 Apr;180(7):1869-77. doi: 10.1128/JB.180.7.1869-1877.1998.
6
The complete genome sequence of the gram-positive bacterium Bacillus subtilis.
Nature. 1997 Nov 20;390(6657):249-56. doi: 10.1038/36786.
8
The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control.
J Bacteriol. 1997 May;179(10):3103-9. doi: 10.1128/jb.179.10.3103-3109.1997.
9
The Bacillus subtilis clpC operon encodes DNA repair and competence proteins.
Microbiology (Reading). 1997 Apr;143 ( Pt 4):1309-1316. doi: 10.1099/00221287-143-4-1309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验