Suppr超能文献

级联冗余减少

Cascaded redundancy reduction.

作者信息

de Sa V R, Hinton G E

机构信息

Department of Computer Science, University of Toronto, Ontario, Canada.

出版信息

Network. 1998 Feb;9(1):73-84. doi: 10.1088/0954-898x/9/1/004.

Abstract

We describe a method for incrementally constructing a hierarchical generative model of an ensemble of binary data vectors. The model is composed of stochastic, binary, logistic units. Hidden units are added to the model one at a time with the goal of minimizing the information required to describe the data vectors using the model. In addition to the top-down generative weights that define the model, there are bottom-up recognition weights that determine the binary states of the hidden units given a data vector. Even though the stochastic generative model can produce each data vector in many ways, the recognition model is forced to pick just one of these ways. The recognition model therefore underestimates the ability of the generative model to predict the data, but this underestimation greatly simplifies the process of searching for the generative and recognition weights of a new hidden unit.

摘要

我们描述了一种用于逐步构建二进制数据向量集合的分层生成模型的方法。该模型由随机的、二进制的逻辑单元组成。隐藏单元一次一个地添加到模型中,目的是最小化使用该模型描述数据向量所需的信息。除了定义模型的自上而下的生成权重外,还有自下而上的识别权重,它们在给定数据向量的情况下确定隐藏单元的二进制状态。尽管随机生成模型可以通过多种方式生成每个数据向量,但识别模型被迫只选择其中一种方式。因此,识别模型低估了生成模型预测数据的能力,但这种低估极大地简化了寻找新隐藏单元的生成权重和识别权重的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验