Hinton G E, Ghahramani Z
Department of Computer Science, University of Toronto, Ontario, Canada.
Philos Trans R Soc Lond B Biol Sci. 1997 Aug 29;352(1358):1177-90. doi: 10.1098/rstb.1997.0101.
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations.
我们描述了一种分层生成模型,它可以被视为因子分析的非线性推广,并且可以在神经网络中实现。该模型使用自下而上、自上而下和横向连接来正确执行贝叶斯感知推理。一旦执行了感知推理,连接强度可以使用一种非常简单的学习规则进行更新,该规则只需要局部可用信息。我们证明该网络学会提取稀疏、分布式的分层表示。