Plumbridge J, Vimr E
Institut de Biologie Physico-chimique (UPR9073), 75005 Paris, France.
J Bacteriol. 1999 Jan;181(1):47-54. doi: 10.1128/JB.181.1.47-54.1999.
N-Acetylglucosamine (GlcNAc) and N-acetylneuraminic acid (NANA) are good carbon sources for Escherichia coli K-12, whereas N-acetylmannosamine (ManNAc) is metabolized very slowly. The isolation of regulatory mutations which enhanced utilization of ManNAc allowed us to elucidate the pathway of its degradation. ManNAc is transported by the manXYZ-encoded phosphoenolpyruvate-dependent phosphotransferase system (PTS) transporter producing intracellular ManNAc-6-P. This phosphorylated hexosamine is subsequently converted to GlcNAc-6-P, which is further metabolized by the nagBA-encoded deacetylase and deaminase of the GlcNAc-6-P degradation pathway. Two independent mutations are necessary for good growth on ManNAc. One mutation maps to mlc, and mutations in this gene are known to enhance the expression of manXYZ. The second regulatory mutation was mapped to the nanAT operon, which encodes the NANA transporter and NANA lyase. The combined action of the nanAT gene products converts extracellular NANA to intracellular ManNAc. The second regulatory mutation defines an open reading frame (ORF), called yhcK, as the gene for the repressor of the nan operon (nanR). Mutations in the repressor enhance expression of the nanAT genes and, presumably, three distal, previously unidentified genes, yhcJIH. Expression of just one of these downstream ORFs, yhcJ, is necessary for growth on ManNAc in the presence of an mlc mutation. The yhcJ gene appears to encode a ManNAc-6-P-to-GlcNAc-6-P epimerase (nanE). Another putative gene in the nan operon, yhcI, likely encodes ManNAc kinase (nanK), which should phosphorylate the ManNAc liberated from NANA by the NanA protein. Use of NANA as carbon source by E. coli also requires the nagBA gene products. The existence of a ManNAc kinase and epimerase within the nan operon allows us to propose that the pathways for dissimilation of the three amino sugars GlcNAc, ManNAc, and NANA, all converge at the step of GlcNAc-6-P.
N-乙酰葡糖胺(GlcNAc)和N-乙酰神经氨酸(NANA)是大肠杆菌K-12的良好碳源,而N-乙酰甘露糖胺(ManNAc)的代谢非常缓慢。分离出增强ManNAc利用的调控突变,使我们能够阐明其降解途径。ManNAc由manXYZ编码的磷酸烯醇丙酮酸依赖性磷酸转移酶系统(PTS)转运体转运,产生细胞内的ManNAc-6-P。这种磷酸化的己糖胺随后被转化为GlcNAc-6-P,后者通过GlcNAc-6-P降解途径中nagBA编码的脱乙酰酶和脱氨酶进一步代谢。在ManNAc上良好生长需要两个独立的突变。一个突变定位于mlc,已知该基因的突变会增强manXYZ的表达。第二个调控突变定位于nanAT操纵子,该操纵子编码NANA转运体和NANA裂解酶。nanAT基因产物的联合作用将细胞外NANA转化为细胞内ManNAc。第二个调控突变将一个开放阅读框(ORF),称为yhcK,定义为nan操纵子(nanR)阻遏物的基因。阻遏物中的突变增强了nanAT基因的表达,大概还有三个远端的、以前未鉴定的基因yhcJIH的表达。在存在mlc突变的情况下,在ManNAc上生长仅需要这些下游ORF之一yhcJ的表达。yhcJ基因似乎编码一种ManNAc-6-P到GlcNAc-6-P的表异构酶(nanE)。nan操纵子中的另一个推定基因yhcI可能编码ManNAc激酶(nanK),它应该将由NanA蛋白从NANA释放的ManNAc磷酸化。大肠杆菌利用NANA作为碳源也需要nagBA基因产物。nan操纵子中存在ManNAc激酶和表异构酶使我们能够提出,三种氨基糖GlcNAc、ManNAc和NANA的异化途径都在GlcNAc-6-P步骤汇聚。