Suppr超能文献

二维指数作为评估正常肝脏、肝硬化肝脏及肝细胞癌中三维正弦结构复杂程度的一种方法。

2-D index as a measure for estimating the complexity degree of 3-D sinusoidal structures in the normal and cirrhotic liver and in hepatocellular carcinoma.

作者信息

Shimizu H, Suda K

机构信息

Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan.

出版信息

Anal Quant Cytol Histol. 1998 Dec;20(6):526-8.

PMID:9870106
Abstract

OBJECTIVE

To evaluate the usefulness of a two-dimensional (2-D) index from a single tissue section as a measure for estimating the complexity degree of three-dimensional (3-D) sinusoidal structure in normal and cirrhotic liver and in hepatocellular carcinoma (HCC).

STUDY DESIGN

The number of sinusoidal profiles, or 2-D index, in a given square area 400 x 400 microns 2 on a single tissue section was counted. The number was compared with the first Betti number of 3-D sinusoidal structures, obtained from previous reconstruction studies.

RESULTS

The mean number of sinusoidal profiles (+/- SD) was 104.2 +/- 13.1 in 5 normal livers, 77.0 +/- 15.8 in 10 cirrhotic livers and 34.0 +/- 10.7 in 10 HCCs. Each difference between the three groups was statistically significant (P < .01). The number of sinusoidal profiles was approximately linearly related to the first Betti number of the sinusoids. The correlation coefficient = .77.

CONCLUSION

The 2-D index, or number of sinusoidal profiles in a given area on a single tissue section, was useful for estimating the degree of complexity of the 3-D sinusoidal network.

摘要

目的

评估来自单一组织切片的二维(2-D)指数作为估计正常肝脏、肝硬化肝脏及肝细胞癌(HCC)中三维(3-D)窦状结构复杂程度指标的有用性。

研究设计

在单一组织切片上一个400×400微米²的给定方形区域内计数窦状轮廓数量,即二维指数。将该数量与先前重建研究获得的三维窦状结构的第一贝蒂数进行比较。

结果

5个正常肝脏中窦状轮廓的平均数量(±标准差)为104.2±13.1,10个肝硬化肝脏中为77.0±15.8,10个HCC中为34.0±10.7。三组之间的每一个差异均具有统计学意义(P<.01)。窦状轮廓数量与窦状结构的第一贝蒂数大致呈线性相关。相关系数=0.77。

结论

二维指数,即单一组织切片给定区域内的窦状轮廓数量,对于估计三维窦状网络的复杂程度是有用的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验