Fanani M L, Maggio B
Departamento de Química Biológica - CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina.
Lipids. 1998 Nov;33(11):1079-87. doi: 10.1007/s11745-998-0308-5.
We investigated the ways in which phospholipase A2 and sphingomyelinase are mutually modulated at lipid interfaces. The activity of one enzyme is affected by its own reaction products and by substrates and products of the other enzyme; all this depends differently on the lateral surface pressure. Ceramide inhibits both the sphingomyelinase activity rate and the extent of degradation, and decreases the lag time at all surface pressures. Dilauroyl- and dipalmitoylphosphatidylcholine, the substrates of phospholipase A2 (PLA2), do not affect sphingomyelinase activity. The products of PLA2, palmitic acid and lysopalmitoylphosphatidylcholine, strongly enhance and shift to high surface pressures the activity optimum and the cutoff point of sphingomyelinase. Palmitic acid also shifts to high surface pressures the cut-off point of PLA2 activity. Sphingomyelin strongly inhibits PLA2 at surface pressures above 5 mN/m, while ceramide shifts the cut-off point and the activity optimum to high surface pressures. The sphingolipids increase the lag time of PLA2 at low surface pressures. Both phosphohydrolytic pathways involve different levels of control on precatalytic steps and on the rate of activity that appear independent on specific alterations of molecular packing and surface potential. The mutual lipid-mediated interfacial modulation between both phosphohydrolytic pathways indicates that phospholipid degradation may be self-amplified or dampened depending on subtle changes of surface pressure and composition.
我们研究了磷脂酶A2和鞘磷脂酶在脂质界面相互调节的方式。一种酶的活性受其自身反应产物以及另一种酶的底物和产物的影响;所有这些在不同程度上取决于侧向表面压力。神经酰胺抑制鞘磷脂酶的活性速率和降解程度,并缩短所有表面压力下的滞后时间。磷脂酶A2(PLA2)的底物二月桂酰磷脂酰胆碱和二棕榈酰磷脂酰胆碱不影响鞘磷脂酶的活性。PLA2的产物棕榈酸和溶血棕榈酰磷脂酰胆碱强烈增强鞘磷脂酶的活性最佳值和截止点,并将其转移到高表面压力下。棕榈酸还将PLA2活性的截止点转移到高表面压力下。在表面压力高于5 mN/m时,鞘磷脂强烈抑制PLA2,而神经酰胺将截止点和活性最佳值转移到高表面压力下。鞘脂类在低表面压力下增加PLA2的滞后时间。两种磷酸水解途径在预催化步骤和活性速率上涉及不同程度的控制,这些控制似乎与分子堆积和表面电位的特定改变无关。两种磷酸水解途径之间相互的脂质介导的界面调节表明,磷脂降解可能会根据表面压力和组成的细微变化而自我放大或受到抑制。