Fabian-Fine R, Höger U, Seyfarth E A, Meinertzhagen I A
Zoologisches Institut, J. W. Goethe-Universität, D-60054 Frankfurt am Main, Germany.
J Neurosci. 1999 Jan 1;19(1):298-310. doi: 10.1523/JNEUROSCI.19-01-00298.1999.
The mechanosensory organs of arachnids receive diverse peripheral inputs. Little is known about the origin, distribution, and function of these chemical synapses, which we examined in lyriform slit sense organ VS-3 of the spider Cupiennius salei. The cuticular slits of this organ are each associated with two large bipolar mechanosensory neurons with different adaptation rates. With intracellular recording, we have now been able to correlate directly the staining intensity of a neuron for acetylcholinesterase with its adaptation rate, thus allowing us simply to stain a neuron to identify its functional type. All rapidly adapting neurons stain more heavily than slowly adapting neurons. Immunostaining of whole-mount preparations reveals GABA-like immunoreactive fibers forming numerous varicosities at the surface of all sensory neurons in VS-3; peripheral GABA-like immunoreactive somata are lacking. Sectioning the leg nerve procures rapid degeneration of most fiber profiles, confirming that the fibers are efferent. Punctate synapsin-like immunoreactivity colocalizes to these varicosities, although some synapsin-like immunoreactive puncta are GABA-immunonegative. Fibers with similar immunoreactivities are also associated with trichobothria, tactile hairs, internal joint receptors, i.e. other types of spider mechanosensory organs. In organ VS-3, immunoreactivity is most dense across the initial axon segment. The exact distribution of peripheral synapses was reconstructed from a 10-microm-long electron micrograph series of the dendritic, somatic, and initial axon regions of acetylcholinesterase-stained VS-3 neurons. These reveal a pattern similar to that of the synapsin-like immunoreactivity. Two different types of synapse were distinguished on the basis of their presynaptic vesicle populations. Many peripheral synapses thus appear to derive from efferent GABA-like immunoreactive fibers and probably provide centrifugal inhibitory control of primary mechanosensory activities.
蛛形纲动物的机械感觉器官接收多种外周输入。对于这些化学突触的起源、分布和功能,我们知之甚少,我们在蜘蛛(Cupiennius salei)的琴形裂隙感觉器官VS - 3中对其进行了研究。该器官的表皮裂隙分别与两个具有不同适应率的大型双极机械感觉神经元相关联。通过细胞内记录,我们现在能够直接将神经元对乙酰胆碱酯酶的染色强度与其适应率相关联,从而使我们能够简单地通过对神经元进行染色来确定其功能类型。所有快速适应的神经元染色都比缓慢适应的神经元更深。整装标本的免疫染色显示,γ-氨基丁酸(GABA)样免疫反应性纤维在VS - 3中所有感觉神经元的表面形成了许多膨体;外周缺乏GABA样免疫反应性胞体。切断腿部神经会导致大多数纤维轮廓迅速退化,证实这些纤维是传出纤维。点状突触素样免疫反应性与这些膨体重叠,尽管一些突触素样免疫反应性斑点对GABA免疫阴性。具有相似免疫反应性的纤维也与毛簇、触觉毛、内部关节感受器相关联,即蜘蛛的其他类型的机械感觉器官。在器官VS - 3中,免疫反应性在初始轴突段最为密集。从乙酰胆碱酯酶染色的VS - 3神经元的树突、胞体和初始轴突区域的一系列10微米长的电子显微照片中重建了外周突触的确切分布。这些显示出与突触素样免疫反应性相似的模式。根据其突触前囊泡群体区分出两种不同类型的突触。因此,许多外周突触似乎源自传出的GABA样免疫反应性纤维,可能对初级机械感觉活动提供离心抑制控制。