Suppr超能文献

惯性运动的计算:解决模糊耳石信息的神经策略。

Computation of inertial motion: neural strategies to resolve ambiguous otolith information.

作者信息

Angelaki D E, McHenry M Q, Dickman J D, Newlands S D, Hess B J

机构信息

Department of Surgery (Otolaryngology), University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.

出版信息

J Neurosci. 1999 Jan 1;19(1):316-27. doi: 10.1523/JNEUROSCI.19-01-00316.1999.

Abstract

According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.

摘要

根据爱因斯坦的等效原理,平移运动期间的惯性加速度与倾斜运动期间所经历的重力加速度在物理上是无法区分的。然而,尽管初级耳石传入神经对运动的感觉表征模糊不清,但灵长类动物的眼球运动反应仍能对头部运动的正确平移分量做出适当的补偿。在灵长类动物的前庭眼动系统中,研究了大脑用于区分这两者并可靠检测平移运动的神经计算策略。实验方案包括横向平移、翻滚倾斜或平移-倾斜组合范式。在黑暗中或接近目标观察时使用稳态正弦和瞬态运动轮廓的结果表明,半规管信号是区分不同线性加速度来源的必要感觉线索。当半规管失活时,水平眼动(适合平移运动)不再与头部平移相关。相反,平移眼动完全反映了错误的初级耳石传入信号,并与合成加速度相关,无论它是由平移还是倾斜引起的。因此,至少对于前庭眼反射对注视稳定很重要的频率(>0.1Hz),眼球运动系统主要通过感觉整合机制而非耳石传入信息的频率分离来区分头部平移和倾斜。文中提出了非线性神经计算方案,其中大脑不仅同时使用来自耳石感受器的线性加速度信息,还使用来自半规管的角速度信号,以正确估计线性加速度的来源并引发适当的眼球运动反应。

相似文献

1
Computation of inertial motion: neural strategies to resolve ambiguous otolith information.
J Neurosci. 1999 Jan 1;19(1):316-27. doi: 10.1523/JNEUROSCI.19-01-00316.1999.
4
Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator.
J Neurosci. 2003 Oct 15;23(28):9265-75. doi: 10.1523/JNEUROSCI.23-28-09265.2003.
7
Inertial processing of vestibulo-ocular signals.
Ann N Y Acad Sci. 1999 May 28;871:148-61. doi: 10.1111/j.1749-6632.1999.tb09181.x.
8
Differential processing of semicircular canal signals in the vestibulo-ocular reflex.
J Neurosci. 1995 Nov;15(11):7201-16. doi: 10.1523/JNEUROSCI.15-11-07201.1995.
9
Vestibular discrimination of gravity and translational acceleration.
Ann N Y Acad Sci. 2001 Oct;942:114-27. doi: 10.1111/j.1749-6632.2001.tb03739.x.

引用本文的文献

1
The Neural Mechanisms of Visual and Vestibular Interaction in Self-Motion Perception.
Biology (Basel). 2025 Jun 21;14(7):740. doi: 10.3390/biology14070740.
4
Comparing saccades in Visually Enhanced Vestibular-Ocular Reflex and video head impulse test in vestibular assessment.
J Otol. 2024 Jul;19(3):148-157. doi: 10.1016/j.joto.2024.07.002. Epub 2024 Oct 19.
5
Human perception of self-motion and orientation during galvanic vestibular stimulation and physical motion.
PLoS Comput Biol. 2024 Nov 18;20(11):e1012601. doi: 10.1371/journal.pcbi.1012601. eCollection 2024 Nov.
6
Learning capabilities to resolve tilt-translation ambiguity in goldfish.
Front Neurol. 2024 May 7;15:1304496. doi: 10.3389/fneur.2024.1304496. eCollection 2024.
8
Vestibular contributions to linear motion perception.
Exp Brain Res. 2024 Feb;242(2):385-402. doi: 10.1007/s00221-023-06754-y. Epub 2023 Dec 22.
9
Increased roll tilt thresholds are associated with subclinical postural instability in asymptomatic adults aged 21 to 84 years.
Front Aging Neurosci. 2023 Aug 10;15:1207711. doi: 10.3389/fnagi.2023.1207711. eCollection 2023.
10
Tilt in Place Microscopy: a Simple, Low-Cost Solution to Image Neural Responses to Body Rotations.
J Neurosci. 2023 Feb 8;43(6):936-948. doi: 10.1523/JNEUROSCI.1736-22.2022. Epub 2022 Dec 14.

本文引用的文献

2
Inertial vestibular coding of motion: concepts and evidence.
Curr Opin Neurobiol. 1997 Dec;7(6):860-6. doi: 10.1016/s0959-4388(97)80147-x.
3
Response properties of pigeon otolith afferents to linear acceleration.
Exp Brain Res. 1997 Nov;117(2):242-50. doi: 10.1007/s002210050219.
4
Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.
J Neurophysiol. 1997 Oct;78(4):1775-90. doi: 10.1152/jn.1997.78.4.1775.
9
Two-dimensional spatiotemporal coding of linear acceleration in vestibular nuclei neurons.
J Neurosci. 1993 Apr;13(4):1403-17. doi: 10.1523/JNEUROSCI.13-04-01403.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验