Talwar S K, Gerstein G L
Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA.
Hear Res. 1998 Dec;126(1-2):135-50. doi: 10.1016/s0378-5955(98)00162-2.
Frequency discrimination was investigated in the albino rat using a modified go/no-go positive reinforcement procedure in which subjects reported frequency increments in an ongoing series of pure tone bursts. Weber ratios (frequency difference limen/frequency) were measured from 5 to 32 kHz at 50 dB sound pressure level. A signal detection analysis of the procedure enabled a direct comparison to be made with the rat's performance in a discrete trial go/no-go task. A mean Weber ratio of 3.06+/-0.44% was measured in the frequency range 5-32 kHz. This indicates that the rat has better frequency discrimination acuity than has previously been thought. The result is discussed in the context of factors affecting performance. Among the factors that were explored we found that long training times and the specific training paradigm played important roles. In comparison to discrete trial go/no-go paradigms, rats performed much better when detecting signals from a repeating background. Frequency discrimination performance decreased linearly for tones less than 50 ms in duration. For longer tone duration performance was unaffected. The means and variability of reaction times for threshold changes of frequency were greater in comparison with supra-threshold frequency changes.