Suppr超能文献

在嗜热栖热放线菌中,一种新型细胞质、传染性和有害决定因素的传播受翻译准确性的控制。

Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina.

作者信息

Silar P, Haedens V, Rossignol M, Lalucque H

机构信息

Institut de Génétique et Microbiologie, Université de Paris Sud, 91405 Orsay Cedex, France.

出版信息

Genetics. 1999 Jan;151(1):87-95. doi: 10.1093/genetics/151.1.87.

Abstract

Some mutant strains of the filamentous fungus Podospora anserina spontaneously present a growth impairment, which has been called Crippled Growth (CG). CG is caused by a cytoplasmic and infectious factor, C. C is efficiently transmitted during mitosis but is not transmitted to the progeny after sexual crosses. C is induced by stationary phase and cured by various means, most of which stress the cells. Translational accuracy is shown to tightly regulate the propagation of C during the active growth period, because its propagation in dividing hyphae is restricted to cells that display an increased translational accuracy. However, induction of C in stationary phase proceeds independently from the translational accuracy status of the strain. CG does not seem to be accompanied by mitochondrial DNA modifications, although C activates the action of the Determinant of Senescence, another cytoplasmic and infectious element, which causes a disorganization of the mitochondrial genome. In addition, presence of C drastically modifies the spectrum of the mitochondrial DNA rearrangements in AS6-5 mat- cultures during Senescence. C seems to belong to the growing list of unconventional genetic elements. The biological significance of such elements is discussed.

摘要

丝状真菌粗糙脉孢菌的一些突变菌株会自发出现生长缺陷,这种缺陷被称为生长迟缓(CG)。CG是由一种细胞质感染因子C引起的。C在有丝分裂期间能有效传递,但在有性杂交后不会传递给后代。C由稳定期诱导产生,并可通过多种方法治愈,其中大多数方法会对细胞造成压力。研究表明,翻译准确性在活跃生长期严格调控C的传播,因为它在分裂菌丝中的传播仅限于翻译准确性提高的细胞。然而,稳定期C的诱导与菌株的翻译准确性状态无关。尽管C激活了衰老决定因子(另一种细胞质感染元件,可导致线粒体基因组紊乱)的作用,但CG似乎并未伴随着线粒体DNA的修饰。此外,在衰老过程中,C的存在会极大地改变AS6 - 5 mat - 培养物中线粒体DNA重排的谱。C似乎属于越来越多的非常规遗传元件。本文讨论了这些元件的生物学意义。

相似文献

3
What triggers senescence in Podospora anserina?是什么引发了嗜热栖热放线菌的衰老?
Fungal Genet Biol. 1999 Jun;27(1):26-35. doi: 10.1006/fgbi.1999.1127.
5
Cell degeneration in the model system Podospora anserina.
Biogerontology. 2001;2(1):1-17. doi: 10.1023/a:1010000816277.

引用本文的文献

3
Amyloid cannot resist identification.淀粉样蛋白无法避免被识别。
Prion. 2013 Nov-Dec;7(6):464-8. doi: 10.4161/pri.27503. Epub 2013 Dec 23.
10
Yeast prions: evolution of the prion concept.酵母朊病毒:朊病毒概念的演变
Prion. 2007 Apr-Jun;1(2):94-100. doi: 10.4161/pri.1.2.4664. Epub 2007 Apr 28.

本文引用的文献

1
EPIGENETIC CONTROL SYSTEMS.表观遗传控制系统
Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):712-7. doi: 10.1073/pnas.44.7.712.
2
ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON.酶诱导作为一种全或无现象。
Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553-66. doi: 10.1073/pnas.43.7.553.
4
Life span of individual yeast cells.单个酵母细胞的寿命
Nature. 1959 Jun 20;183(4677):1751-2. doi: 10.1038/1831751a0.
7
Molecular mechanisms of yeast aging.酵母衰老的分子机制
Trends Biochem Sci. 1998 Apr;23(4):131-4. doi: 10.1016/s0968-0004(98)01188-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验