Martins Marta, Rodrigues-Lima Fernando, Dairou Julien, Lamouri Aazdine, Malagnac Fabienne, Silar Philippe, Dupret Jean-Marie
Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS Equipe d'Accueil Conventionée (EAC) 7059, Laboratoire des Réponses Moléculaires et Cellulaires aux Xénobiotiques, France.
J Biol Chem. 2009 Jul 10;284(28):18726-33. doi: 10.1074/jbc.M109.015230. Epub 2009 May 5.
Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils.
芳香胺(AA)是一类主要的环境污染物,已被证明对大多数生物具有遗传毒性和细胞毒性潜力。真菌能够耐受多种化合物,包括某些芳香胺,长期以来一直被用作理解一般生物过程的模型。破解这种耐受性背后的机制可能会增进我们对生物体适应压力环境的理解,并为新型药物和/或生物技术应用铺平道路。我们从模式真菌嗜热栖热放线菌中鉴定并表征了两种芳胺N-乙酰基转移酶(NAT)(PaNAT1和PaNAT2),它们能使多种芳香胺乙酰化。靶向基因破坏实验表明,在有毒芳香胺存在的情况下,PaNAT2是真菌生长和存活所必需的。使用敲除菌株和化学乙酰化芳香胺进行的功能研究表明,嗜热栖热放线菌对有毒芳香胺的耐受性是由于PaNAT2对这些化学物质进行了N-乙酰化。此外,我们提供了概念验证修复实验,在实验污染的土壤样本中,嗜热栖热放线菌通过其PaNAT2酶能够对剧毒农药残留3,4-二氯苯胺进行解毒。总体而言,我们的数据表明,一种单一的外源性代谢酶可以介导真核物种对一类主要污染物的耐受性。这些发现扩展了我们对外源性代谢酶,特别是NATs在生物体适应其化学环境中的作用的理解,并为污染土壤生物修复的新系统提供了基础。