Morisset V, Nagy F
INSERM U.378, Neurobiologie Morphofonctionnelle, Institut François Magendie, Bordeaux, France.
Eur J Neurosci. 1998 Dec;10(12):3642-52. doi: 10.1046/j.1460-9568.1998.00370.x.
Deep dorsal horn neurons (DHNs) involved in nociception can relay long-lasting inputs and generate prolonged afterdischarges believed to enhance the transfer of nociceptive responses to the brain. We addressed the role of neuronal membrane properties in shaping these responses, by recording lamina V DHNs in a slice preparation of the rat cervical spinal cord. Of 256 neurons, 102 produced accelerating discharges in response to depolarizing current pulses, whereas the other neurons showed spike frequency adaptation. Two mechanisms mediated the firing acceleration: a slow inactivation of a K+ current expressed upon activation of the neuron from hyperpolarized holding potentials, and the expression of a regenerative plateau potential activating around resting membrane potential. The increase in firing frequency was much stronger when sustained by the plateau potential (71 DHNs, 28%). A few neurons produced adaptation and both types of acceleration, in different membrane potential domains, showing that the firing pattern of a deep DHN is not a rigid characteristic. Plateau potentials could be elicited by stimulation of nociceptive primary afferent fibres. The bistability associated with plateau potentials permitted afterdischarges. Because plateau potentials had slow activation kinetics and were voltage-dependent, the neurons had non-linear input-output relationships in both the amplitude and time domains. Nociceptive primary afferent stimulation elicited intense and prolonged responses in plateau-generating DHNs, while brief bursts of spikes were evoked otherwise. These results indicate that in a population of deep DHNs, intense firing and prolonged afterdischarges in response to nociceptive stimulation depend on non-linear intrinsic membrane properties.
参与痛觉感受的脊髓背角深层神经元(DHNs)能够传递持久的输入信号并产生延长的后放电,据信这会增强痛觉反应向大脑的传递。我们通过在大鼠颈脊髓切片标本中记录V层DHNs,研究了神经元膜特性在塑造这些反应中的作用。在256个神经元中,102个神经元在去极化电流脉冲刺激下产生放电加速,而其他神经元则表现出放电频率适应性。两种机制介导了放电加速:一种是在超极化钳制电位激活神经元时表达的K⁺电流的缓慢失活,另一种是在静息膜电位附近激活的再生平台电位的表达。当由平台电位维持时,放电频率的增加要强得多(71个DHNs,28%)。少数神经元在不同的膜电位域产生适应性和两种类型的加速,这表明深层DHN的放电模式不是一个固定不变的特征。平台电位可由伤害性初级传入纤维的刺激诱发。与平台电位相关的双稳态允许后放电。由于平台电位具有缓慢的激活动力学且依赖电压,神经元在幅度和时间域都具有非线性输入-输出关系。伤害性初级传入刺激在产生平台电位的DHNs中引发强烈且延长的反应,而在其他情况下则诱发短暂的脉冲串。这些结果表明,在一群深层DHNs中,对伤害性刺激的强烈放电和延长的后放电依赖于非线性的内在膜特性。