Suppr超能文献

用恶嗪醇VI对分离的植物根质膜被动运输硝酸根离子进行电生理研究。

Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.

作者信息

Pouliquin P, Grouzis J, Gibrat R

机构信息

Biochimie et Physiologie Moléculaire des Plantes, CNRS (URA 2133)/INRA/ENSA-M, Montpellier, France.

出版信息

Biophys J. 1999 Jan;76(1 Pt 1):360-73. doi: 10.1016/s0006-3495(99)77203-6.

Abstract

In contrast to animal cells, plant cells contain approximately 5-50 mM nitrate in cytosol and vacuole. The lack of specific spectroscopic probes, or suitable isotopes, impedes in vitro studies of NO3- transport. Reconstitution of root cell plasma membrane (PM) proteins in mixed soybean lipid:egg phosphatidylcholine allowed for the generation of large K+-valinomycin diffusion potentials (Em), monitored with the oxonol VI dye. Nevertheless, Em was restricted to approximately 130 mV by capacitor properties of biological membranes. This caused an increasing discrepancy at higher K+-Nernst potentials used for calibration. Therefore, Em was determined directly from the fluorescence of the dye free in buffer, bound at zero Em, and bound upon Em generation. Then, an electrophysiological analysis of the NO3--dependent dissipation rate of Em gave the net passive flux (JN) and the permeability coefficient to NO3- (PN). The plant root cell PM exhibited a strikingly large PN (higher than 10(-9) m s-1) at high Em (90-100 mV) and pH 6.5. At low Em (50-60 mV) and pH 7.4, PN decreased by 70-fold and became similar to that of the lipid bilayer. This agreed with the previous observation that 15 mM NO3- short-circuits the plant root PM H+-ATPase at its optimal pH of 6.5.

摘要

与动物细胞不同,植物细胞的细胞质和液泡中含有约5-50 mM的硝酸盐。缺乏特定的光谱探针或合适的同位素阻碍了对硝酸根转运的体外研究。在大豆脂质与鸡蛋磷脂酰胆碱的混合物中重建根细胞质膜(PM)蛋白,可产生较大的钾离子缬氨霉素扩散电位(Em),用氧杂萘酚VI染料进行监测。然而,由于生物膜的电容特性,Em被限制在约130 mV左右。这导致在用于校准的较高钾离子能斯特电位下差异越来越大。因此,Em是直接根据缓冲液中游离染料的荧光来确定的,该染料在Em为零时结合,在Em产生时结合。然后,对Em的硝酸根依赖性耗散速率进行电生理分析,得出净被动通量(JN)和硝酸根的渗透系数(PN)。在高Em(90-100 mV)和pH 6.5时,植物根细胞质膜表现出惊人的大PN(高于10^(-9) m s^(-1))。在低Em(50-60 mV)和pH 7.4时,PN下降70倍,与脂质双层的PN相似。这与之前观察到的15 mM硝酸根在其最佳pH 6.5时使植物根质膜H+-ATP酶短路的现象一致。

相似文献

1
Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
Biophys J. 1999 Jan;76(1 Pt 1):360-73. doi: 10.1016/s0006-3495(99)77203-6.
2
In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells.
Biochim Biophys Acta. 1997 Apr 26;1325(2):329-42. doi: 10.1016/s0005-2736(96)00256-8.
4
Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H -ATPase activity.
Plant Biol (Stuttg). 2018 Mar;20(2):390-398. doi: 10.1111/plb.12674. Epub 2017 Dec 21.
5
Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
Biochim Biophys Acta. 1987 Oct 16;903(3):480-94. doi: 10.1016/0005-2736(87)90055-1.
7
Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots.
J Exp Bot. 2004 Sep;55(405):2053-61. doi: 10.1093/jxb/erh231. Epub 2004 Aug 13.
10
Nitrate uptake along the maize primary root: an integrated physiological and molecular approach.
Plant Cell Environ. 2011 Jul;34(7):1127-40. doi: 10.1111/j.1365-3040.2011.02311.x. Epub 2011 Apr 21.

引用本文的文献

1
Role of cardiolipin in proton transmembrane flux and localization.
Biophys J. 2025 Jan 21;124(2):408-416. doi: 10.1016/j.bpj.2024.12.015. Epub 2024 Dec 13.
2
Preparation of Everted Membrane Vesicles from Cells.
Bio Protoc. 2017 May 5;7(9):e2254. doi: 10.21769/BioProtoc.2254.
4
Electrogenic plasma membrane H+-ATPase activity using voltage sensitive dyes.
J Bioenerg Biomembr. 2010 Oct;42(5):387-93. doi: 10.1007/s10863-010-9306-7. Epub 2010 Aug 24.
5
Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter.
Plant Cell. 2007 Nov;19(11):3760-77. doi: 10.1105/tpc.106.048173. Epub 2007 Nov 9.
6
The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity.
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9660-5. doi: 10.1073/pnas.161215198. Epub 2001 Aug 7.
7
An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells.
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):485-90. doi: 10.1073/pnas.98.2.485. Epub 2001 Jan 9.

本文引用的文献

3
Potential-dependent anion transport in tonoplast vesicles from oat roots.
Plant Physiol. 1987 Mar;83(3):483-9. doi: 10.1104/pp.83.3.483.
4
H and k electrogenic exchanges in corn roots.
Plant Physiol. 1986 Jul;81(3):847-53. doi: 10.1104/pp.81.3.847.
5
H-pumping driven by the vanadate-sensitive ATPase in membrane vesicles from corn roots.
Plant Physiol. 1986 Jun;81(2):542-7. doi: 10.1104/pp.81.2.542.
7
Aluminum activates an anion channel in the apical cells of wheat roots.
Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6547-52. doi: 10.1073/pnas.94.12.6547.
8
In vitro study of passive nitrate transport by native and reconstituted plasma membrane vesicles from corn root cells.
Biochim Biophys Acta. 1997 Apr 26;1325(2):329-42. doi: 10.1016/s0005-2736(96)00256-8.
9
Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA.
Science. 1992 Dec 4;258(5088):1654-8. doi: 10.1126/science.8966547.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验