Suppr超能文献

放射图像配准算法及其临床应用。

Algorithms for radiological image registration and their clinical application.

作者信息

Hawkes D J

机构信息

Computational Imaging Science Group, Division of Radiological Sciences, United Medical and Dental Schools of Guy's and St. Thomas' Hospitals, London, UK.

出版信息

J Anat. 1998 Oct;193 ( Pt 3)(Pt 3):347-61. doi: 10.1046/j.1469-7580.1998.19330347.x.

Abstract

This paper reviews recent work in radiological image registration and provides a classification of image registration by type of transformation and by methods employed to compute the transformation. The former includes transformation of 2D images to 2D images of the same individual, transformation of 3D images to 3D images of the same individual, transformation of images to an atlas or model, transformation of images acquired from a number of individuals, transformations for image guided interventions including 2D to 3D registration and finally tissue deformation in image guided interventions. Recent work on computing transformations for registration using corresponding landmark based registration, surface based registration and voxel similarity measures, including entropy based measures, are reviewed and compared. Recently fully automated algorithms based on voxel similarity measures and, in particular, mutual information have been shown to be accurate and robust at registering images of the head when the rigid body assumption is valid. Two approaches to modelling soft tissue deformation for applications in image guided interventions are described. Validation of complex processing tasks such as image registration is vital if these algorithms are to be used in clinical practice. Three alternative validation strategies are presented. These methods are finding application outside the original domain of radiological imaging.

摘要

本文回顾了放射图像配准的近期工作,并按变换类型和用于计算变换的方法对图像配准进行了分类。前者包括将二维图像变换为同一个体的二维图像、将三维图像变换为同一个体的三维图像、将图像变换为图谱或模型、将从多个个体获取的图像进行变换、用于图像引导介入的变换(包括二维到三维配准)以及最后图像引导介入中的组织变形。本文回顾并比较了近期使用基于对应地标配准、基于表面配准和体素相似性度量(包括基于熵的度量)来计算配准变换的工作。最近,基于体素相似性度量,特别是互信息的全自动算法,在刚体假设有效的情况下,已被证明在配准头部图像时准确且稳健。描述了两种用于在图像引导介入中对软组织变形进行建模的方法。如果要在临床实践中使用这些算法,对诸如图像配准等复杂处理任务进行验证至关重要。提出了三种替代验证策略。这些方法正在放射成像的原始领域之外得到应用。

相似文献

1
Algorithms for radiological image registration and their clinical application.放射图像配准算法及其临床应用。
J Anat. 1998 Oct;193 ( Pt 3)(Pt 3):347-61. doi: 10.1046/j.1469-7580.1998.19330347.x.
6
Non-rigid registration of medical images based on estimation of deformation states.基于变形状态估计的医学图像非刚性配准
Phys Med Biol. 2014 Nov 21;59(22):6891-921. doi: 10.1088/0031-9155/59/22/6891. Epub 2014 Oct 28.
10
Inverse consistent non-rigid image registration based on robust point set matching.基于鲁棒点集匹配的反向一致非刚性图像配准
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11.

引用本文的文献

9
Multimodality image registration with software: state-of-the-art.使用软件的多模态图像配准:最新技术水平
Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S44-55. doi: 10.1007/s00259-008-0941-8.
10
Robust brain registration using adaptive probabilistic atlas.使用自适应概率图谱进行稳健的脑图谱配准。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1041-9. doi: 10.1007/978-3-540-85990-1_125.

本文引用的文献

2
6
MRI-PET registration with automated algorithm.采用自动算法的磁共振成像-正电子发射断层显像配准
J Comput Assist Tomogr. 1993 Jul-Aug;17(4):536-46. doi: 10.1097/00004728-199307000-00004.
9
Voxel-based localization in frame-based and frameless stereotaxy and its accuracy.
Med Phys. 1994 Aug;21(8):1301-10. doi: 10.1118/1.597403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验