Zuckermann F A, Martin S, Husmann R J, Brandt J
Department of Veterinary Pathobiology, University of Illinois, Urbana 61801, USA.
Adv Vet Med. 1999;41:447-61. doi: 10.1016/s0065-3519(99)80034-2.
Vaccination is the single most successful medical measure against infectious disease. However, the major barrier for achieving the full protective effect or immunization is how to render attenuated, killed, or subunit vaccines as immunogenic as the fully infectious versions of these microbes (Hughes and Babiuk, 1995; Rabinovich et al., 1994). In the case of PrV, infection with wild-type virus induces an immune response superior to vaccination with a live modified vaccine. After primary intranasal infection with wild-type PrV, the replication of a homologous secondary virus challenge is completely inhibited, and the much sought "sterile immunity" is generated (Kimman et al., 1994). In contrast, the immune response of pigs similarly exposed to PrV mutants, which have been attenuated by removal of the thymidine kinase (TK) and the envelope glycoprotein gE gene (McGregor et al., 1985; Zuckermann et al., 1988), is insufficient for preventing the replication of a homologous wild-type virus challenge (Kimman et al., 1994). Furthermore, inactivated PrV vaccines are even less effective at inducing protective immunity than are live modified PrV vaccines (de Leeuw and Van Orischot, 1985; Stellman et al., 1989; Vannier, 1985). The importance of inactivated and subunit vaccines resides in their stability and safety, since no infectious microbe is being introduced into the animal. However, because of the recognized lower effectiveness of inactivated vaccine types, they usually fall in disfavor when a modified live vaccine alternative is available. There is a critical need to develop strategies to enhance the immunogenicity of live, inactivated, and sub-unit vaccines for human and veterinary use (Hughes and Babiuk, 1995; Rabinovich et al., 1994). Although the inoculation of an animal with a virulent microbe is obviously not the desired method to produce sterile immunity, the immune response generated to infection with wild-type PrV clearly demonstrates that this type of immunity is possible. Research directed at devising strategies to increase the immunogenicity of different types of vaccines is necessary. Because of the wealth of information available on PrV immunity (reviewed by Chinsakchai and Molitor, 1994; Nauwynck, 1997), on PrV vaccines (Kimman et al., 1992, 1994; Mettenleiter, 1991; Scherba and Zuckermann, 1996) and increasingly on the porcine immune system (Lunney, 1993; Lunney et al., 1996; Saalmüller, 1995), the swine herpesvirus model is ideal for investigating the development of vaccine formulations with enhanced immunogenicity. Among the strategies currently being examined for the enhancement of the immunogenicity of inactivated and subunit vaccines is the use of recombinant cytokines administered together with antigen (Hughes and Babiuk, 1995; Rabinovich et al., 1994). The ability to regulate the development of an immune response by cytokines such as IL-12 provides the theoretical basis to use these cytokines as adjuvants to immunopotentiate the response to an inactivated vaccine. More importantly, it provides a model to investigate the mechanisms behind the induction of protective immunity and the components of a vaccine necessary for stimulating such a response. By providing cytokines such as IL-12 or IFN-gamma in combination with the vaccine inoculum, it is reasonable to expect that they will be able to direct the differentiation of T cells during the primary immune response. Modulation, in a predictable and desired manner of the quality and quantity of the induced protective immunity, should be achievable. The ability to manipulate a vaccine-induced immune response in the direction of a predominantly cellular response (Th1-like) instead of a predominantly humoral one (Th2-like) is perhaps best illustrated by the need to develop an effective vaccine against the porcine reproductive and respiratory syndrome (PRRS) virus, whose infectivity can be significantly enhanced in vitro and in vivo by antibody induced by vaccination
疫苗接种是预防传染病最成功的医学手段。然而,实现全面保护效果或免疫的主要障碍在于如何使减毒、灭活或亚单位疫苗具有与这些微生物的完全感染性版本一样的免疫原性(休斯和巴比克,1995年;拉比诺维奇等人,1994年)。就伪狂犬病病毒(PrV)而言,野生型病毒感染诱导的免疫反应优于用活的改良疫苗接种。用野生型PrV进行初次鼻内感染后,同源二次病毒攻击的复制被完全抑制,并产生了人们一直追求的“无菌免疫”(金曼等人,1994年)。相比之下,猪接触经去除胸苷激酶(TK)和包膜糖蛋白gE基因而减毒的PrV突变体后,其免疫反应不足以防止同源野生型病毒攻击的复制(金曼等人,1994年)。此外,灭活的PrV疫苗在诱导保护性免疫方面甚至比活的改良PrV疫苗效果更差(德·利乌和范·奥里肖特,1985年;斯特尔曼等人,1989年;万尼尔,1985年)。灭活疫苗和亚单位疫苗的重要性在于它们的稳定性和安全性,因为没有将感染性微生物引入动物体内。然而,由于认识到灭活疫苗类型的有效性较低,当有改良活疫苗可供选择时,它们通常不受青睐。迫切需要制定策略来提高用于人类和兽医的活疫苗、灭活疫苗和亚单位疫苗的免疫原性(休斯和巴比克,1995年;拉比诺维奇等人,1994年)。虽然用强毒微生物接种动物显然不是产生无菌免疫的理想方法,但野生型PrV感染产生的免疫反应清楚地表明这种免疫是可能的。有必要开展旨在设计提高不同类型疫苗免疫原性策略的研究。由于有大量关于PrV免疫(钦萨克柴和莫利托综述,1994年;瑙温克,1997年)、PrV疫苗(金曼等人,1992年、1994年;梅滕莱特,1991年;舍尔巴和祖克曼,1996年)以及越来越多关于猪免疫系统(伦尼,1993年;伦尼等人,1996年;萨尔米勒,1995年)的信息,猪疱疹病毒模型是研究具有增强免疫原性的疫苗制剂开发的理想模型。目前正在研究的增强灭活疫苗和亚单位疫苗免疫原性的策略之一是将重组细胞因子与抗原一起使用(休斯和巴比克,1995年;拉比诺维奇等人,1994年)。白细胞介素-12等细胞因子调节免疫反应发展的能力为将这些细胞因子用作佐剂以增强对灭活疫苗的反应提供了理论基础。更重要的是,它提供了一个模型来研究诱导保护性免疫背后的机制以及刺激这种反应所需的疫苗成分。通过将白细胞介素-12或干扰素-γ等细胞因子与疫苗接种物联合使用,可以合理预期它们将能够在初次免疫反应期间指导T细胞的分化。以可预测和期望的方式调节诱导的保护性免疫的质量和数量应该是可以实现的。通过开发针对猪繁殖与呼吸综合征(PRRS)病毒的有效疫苗来说明操纵疫苗诱导的免疫反应朝着主要是细胞反应(类似Th1)而不是主要是体液反应(类似Th2)方向发展的能力,其感染性可在体外和体内通过疫苗诱导的抗体显著增强