Qu L H, Henras A, Lu Y J, Zhou H, Zhou W X, Zhu Y Q, Zhao J, Henry Y, Caizergues-Ferrer M, Bachellerie J P
Biotechnology Research Center, Zhongshan University, Guangzhou 510 275, People's Republic of China.
Mol Cell Biol. 1999 Feb;19(2):1144-58. doi: 10.1128/MCB.19.2.1144.
Through a computer search of the genome of the yeast Saccharomyces cerevisiae, the coding sequences of seven different box C/D antisense small nucleolar RNAs (snoRNAs) with the structural hallmarks of guides for rRNA ribose methylation have been detected clustered over a 1.4-kb tract in an inter-open reading frame region of chromosome XIII. The corresponding snoRNAs have been positively identified in yeast cells. Disruption of the nonessential snoRNA gene cluster specifically suppressed the seven cognate rRNA ribose methylations but did not result in any growth delay under the conditions of yeast culture tested. The seven snoRNAs are processed from a common polycistronic transcript synthesized from an independent promoter, similar to some plant snoRNAs but in marked contrast with their vertebrate functional homologues processed from pre-mRNA introns containing a single snoRNA. Processing of the polycistronic precursor requires nucleases also involved in rRNA processing, i.e., Rnt1p and Rat1p. After disruption of the RNT1 gene, the yeast ortholog of bacterial RNase III, production of the seven mature snoRNAs was abolished, while the polycistronic snoRNA precursor accumulated. In cells lacking functional Rat1p, an exonuclease involved in the processing of both pre-rRNA and intron-encoded snoRNAs, several processing intermediates of the polycistronic precursor accumulated. This allowed for the mapping in the precursor of the presumptive Rnt1p endonucleolytic cuts which provide entry sites for subsequent exonucleolytic trimming of the pre-snoRNAs. In line with known properties of double-stranded RNA-specific RNase III, pairs of Rnt1p cuts map next to each other on opposite strands of long double-helical stems in the secondary structure predicted for the polycistronic snoRNA precursor.
通过对酿酒酵母基因组进行计算机搜索,在13号染色体的一个开放阅读框间区域内,发现了7种不同的具有rRNA核糖甲基化引导结构特征的C/D盒反义小核仁RNA(snoRNA)的编码序列,它们聚集在一段1.4 kb的区域内。相应的snoRNA已在酵母细胞中得到了确切鉴定。非必需snoRNA基因簇的破坏特异性地抑制了7种同源rRNA核糖甲基化,但在测试的酵母培养条件下并未导致任何生长延迟。这7种snoRNA是由一个独立启动子合成的共同多顺反子转录本加工而来,这与一些植物snoRNA相似,但与从含有单个snoRNA的前体mRNA内含子加工而来其脊椎动物功能同源物形成显著对比。多顺反子前体的加工需要参与rRNA加工的核酸酶,即Rnt1p和Rat1p。破坏细菌RNase III的酵母直系同源基因RNT1后,7种成熟snoRNA的产生被消除,而多顺反子snoRNA前体积累。在缺乏功能性Rat1p(一种参与前体rRNA和内含子编码snoRNA加工的核酸外切酶)的细胞中,多顺反子前体的几种加工中间体积累。这使得可以在假定的Rnt1p内切核酸酶切割位点的前体中进行定位,这些切割位点为后续snoRNA前体的核酸外切酶修剪提供了入口位点。与双链RNA特异性RNase III的已知特性一致,Rnt1p切割对在多顺反子snoRNA前体二级结构预测的长双螺旋茎的相反链上彼此相邻。