Suppr超能文献

mRNA 去帽酶缺陷的抑制剂在不显著影响 mRNA 降解速率或丰度的情况下恢复生长。

Suppressors of mRNA Decapping Defects Restore Growth Without Major Effects on mRNA Decay Rates or Abundance.

机构信息

Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030.

Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030

出版信息

Genetics. 2020 Dec;216(4):1051-1069. doi: 10.1534/genetics.120.303641. Epub 2020 Sep 30.

Abstract

Faithful degradation of mRNAs is a critical step in gene expression, and eukaryotes share a major conserved mRNA decay pathway. In this major pathway, the two rate-determining steps in mRNA degradation are the initial gradual removal of the poly(A) tail, followed by removal of the cap structure. Removal of the cap structure is carried out by the decapping enzyme, containing the Dcp2 catalytic subunit. Although the mechanism and regulation of mRNA decay is well understood, the consequences of defects in mRNA degradation are less clear. Dcp2 has been reported as either essential or nonessential. Here, we clarify that Dcp2 is not absolutely required for spore germination and extremely slow growth, but in practical terms it is impossible to continuously culture ∆ under laboratory conditions without suppressors arising. We show that null mutations in at least three different genes are each sufficient to restore growth to a ∆, of which ∆ and ∆ appear the most specific. We show that ∆ and ∆ suppress by mechanisms that are different from each other and from previously isolated suppressors. The suppression mechanism for is determined by the unique GAG anticodon of this tRNA, and thus likely by translation of some CUC or CUU codons. Unlike previously reported suppressors of decapping defects, these suppressors do not detectably restore decapping or mRNA decay to normal rates, but instead allow survival while only modestly affecting RNA homeostasis. These results provide important new insight into the importance of decapping, resolve previously conflicting publications about the essentiality of , provide the first phenotype for a mutant, and show that multiple distinct mechanisms can bypass Dcp2 requirement.

摘要

mRNA 的忠实降解是基因表达的关键步骤,真核生物共享主要保守的 mRNA 降解途径。在这个主要途径中,mRNA 降解的两个限速步骤是聚(A)尾的初始逐渐去除,然后是帽结构的去除。帽结构的去除由含有 Dcp2 催化亚基的脱帽酶完成。尽管 mRNA 降解的机制和调控已经得到很好的理解,但 mRNA 降解缺陷的后果还不太清楚。已经报道 Dcp2 要么是必需的,要么是非必需的。在这里,我们澄清 Dcp2 对于孢子萌发和极其缓慢的生长并不是绝对必需的,但实际上在没有抑制剂出现的情况下,在实验室条件下连续培养 ∆ 是不可能的。我们表明,至少三种不同基因的 null 突变都足以使 ∆ 恢复生长,其中 ∆ 和 ∆ 似乎最具特异性。我们表明, ∆ 和 ∆ 通过与彼此以及与先前分离的 抑制剂不同的机制来抑制 。该 tRNA 的独特 GAG 反密码子决定了 的抑制机制,因此可能是翻译某些 CUC 或 CUU 密码子。与以前报道的脱帽缺陷抑制剂不同,这些抑制剂不会显著恢复脱帽或 mRNA 降解至正常速率,而是在仅适度影响 RNA 稳态的情况下允许存活。这些结果为脱帽的重要性提供了重要的新见解,解决了以前关于 必需性的相互矛盾的出版物,为 突变体提供了第一个表型,并表明多种不同的机制可以绕过 Dcp2 的需求。

相似文献

1
Suppressors of mRNA Decapping Defects Restore Growth Without Major Effects on mRNA Decay Rates or Abundance.
Genetics. 2020 Dec;216(4):1051-1069. doi: 10.1534/genetics.120.303641. Epub 2020 Sep 30.
3
Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo.
PLoS Genet. 2018 Dec 7;14(12):e1007806. doi: 10.1371/journal.pgen.1007806. eCollection 2018 Dec.
4
Structural and functional control of the eukaryotic mRNA decapping machinery.
Biochim Biophys Acta. 2013 Jun-Jul;1829(6-7):580-9. doi: 10.1016/j.bbagrm.2012.12.006. Epub 2012 Dec 31.
6
Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain.
RNA. 2015 Sep;21(9):1633-47. doi: 10.1261/rna.052449.115. Epub 2015 Jul 16.
7
Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition.
RNA. 2011 Feb;17(2):278-90. doi: 10.1261/rna.2382011. Epub 2010 Dec 10.
10
Identification and analysis of the interaction between Edc3 and Dcp2 in Saccharomyces cerevisiae.
Mol Cell Biol. 2010 Mar;30(6):1446-56. doi: 10.1128/MCB.01305-09. Epub 2010 Jan 19.

引用本文的文献

2
Coordination between aminoacylation and editing to protect against proteotoxicity.
Nucleic Acids Res. 2023 Oct 27;51(19):10606-10618. doi: 10.1093/nar/gkad778.
4
Eukaryotic mRNA Decapping Activation.
Front Genet. 2022 Mar 23;13:832547. doi: 10.3389/fgene.2022.832547. eCollection 2022.

本文引用的文献

1
A novel 5'-hydroxyl dinucleotide hydrolase activity for the DXO/Rai1 family of enzymes.
Nucleic Acids Res. 2020 Jan 10;48(1):349-358. doi: 10.1093/nar/gkz1107.
2
The endonuclease Cue2 cleaves mRNAs at stalled ribosomes during No Go Decay.
Elife. 2019 Jun 20;8:e49117. doi: 10.7554/eLife.49117.
4
Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo.
PLoS Genet. 2018 Dec 7;14(12):e1007806. doi: 10.1371/journal.pgen.1007806. eCollection 2018 Dec.
6
Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae.
Cytoskeleton (Hoboken). 2019 Jan;76(1):15-32. doi: 10.1002/cm.21500. Epub 2018 Dec 5.
7
Whi2 is a conserved negative regulator of TORC1 in response to low amino acids.
PLoS Genet. 2018 Aug 24;14(8):e1007592. doi: 10.1371/journal.pgen.1007592. eCollection 2018 Aug.
8
mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases.
Mol Cell. 2018 Jun 21;70(6):1089-1100.e8. doi: 10.1016/j.molcel.2018.05.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验