Suppr超能文献

利用计算机辅助诊断改善乳腺癌诊断。

Improving breast cancer diagnosis with computer-aided diagnosis.

作者信息

Jiang Y, Nishikawa R M, Schmidt R A, Metz C E, Giger M L, Doi K

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, IL 60637, USA.

出版信息

Acad Radiol. 1999 Jan;6(1):22-33. doi: 10.1016/s1076-6332(99)80058-0.

Abstract

RATIONALE AND OBJECTIVES

The purpose of this study was to test whether computer-aided diagnosis (CAD) can improve radiologists' performance in breast cancer diagnosis.

MATERIALS AND METHODS

The computer classification scheme used in this study estimates the likelihood of malignancy for clustered microcalcifications based on eight computer-extracted features obtained from standard-view mammograms. One hundred four histologically verified cases of microcalcifications (46 malignant, 58 benign) in a near-consecutive biopsy series were used in this study. Observer performance was measured on 10 radiologists who read the original standard- and magnification-view mammograms. The computer aid provided a percentage estimate of the likelihood of malignancy. Comparison was made between computer-aided performance and unaided (routine clinical) performance by using receiver operating characteristic (ROC) analysis and by comparing biopsy recommendations.

RESULTS

The average ROC curve area (Az) increased from 0.61 without aid to 0.75 with the computer aid (P < .0001). On average, with the computer aid, each observer recommended 6.4 additional biopsies for cases with malignant lesions (P = .0006) and 6.0 fewer biopsies for cases with benign lesions (P = .003). This improvement corresponded to increases in sensitivity (from 73.5% to 87.4%), specificity (from 31.6% to 41.9%), and hypothetical positive biopsy yield (from 46% to 55%).

CONCLUSION

CAD can be used to improve radiologists' performance in breast cancer diagnosis.

摘要

原理与目的

本研究旨在测试计算机辅助诊断(CAD)能否提高放射科医生在乳腺癌诊断中的表现。

材料与方法

本研究中使用的计算机分类方案基于从标准视图乳房X线照片中提取的八个计算机特征,估计簇状微钙化的恶性可能性。本研究使用了近连续活检系列中的104例经组织学证实的微钙化病例(46例恶性,58例良性)。对10名阅读原始标准视图和放大视图乳房X线照片的放射科医生的观察表现进行了测量。计算机辅助提供了恶性可能性的百分比估计。通过使用受试者操作特征(ROC)分析并比较活检建议,对计算机辅助表现和无辅助(常规临床)表现进行了比较。

结果

平均ROC曲线面积(Az)从无辅助时的0.61增加到有计算机辅助时的0.75(P <.0001)。平均而言,在计算机辅助下,每位观察者对恶性病变病例额外推荐了6.4次活检(P =.0006),对良性病变病例少推荐了6.0次活检(P =.003)。这种改善对应于敏感性(从73.5%提高到87.4%)、特异性(从31.6%提高到41.9%)和假设的阳性活检率(从46%提高到55%)的增加。

结论

CAD可用于提高放射科医生在乳腺癌诊断中的表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验