Suppr超能文献

Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer.

作者信息

Van Dorp A G, Verhoeven M C, Koerten H K, Van Der Nat-Van Der Meij T H, Van Blitterswijk C A, Ponec M

机构信息

Department of Dermatology, Biomaterials Research Group, Leiden University Medical Center, The Netherlands.

出版信息

Wound Repair Regen. 1998 Nov-Dec;6(6):556-68. doi: 10.1046/j.1524-475x.1998.60608.x.

Abstract

The aim of this study was to assess the performance of a biodegradable dermal substrate in deep dermal skin defects. The substrate consisted of a synthetic biodegradable matrix called Polyactive, which is an elastomeric poly (ether)/ poly (ester) block copolymer. This matrix was manufactured either as a porous substrate, with gradually changing pore size (BISKIN-M), or as a bilayer consisting of a porous underlayer with a fully dense surface layer (BISKIN). Cell-free matrices and matrices seeded with autologous or allogeneic porcine fibroblasts were applied to full-thickness skin wounds in Yucatan miniature pigs. Biopsies were taken at different time intervals up to 24-months post-transplantation. Although all BISKIN substrates showed little or no adherence to the wound bed, the adherence of the BISKIN-M substrates to the underlying wound was achieved within minutes after application. Therefore, only BISKIN-M Polyactive substrates were further evaluated. Wound contraction was inhibited by both cell-free and fibroblast-populated substrates. All substrates showed extensive neovascular and fibrous tissue ingrowth within 2-weeks post-transplantation. Furthermore, during this time period, matrix degradation was observed, starting with the fragmentation of the polymers into particles, which were phagocytized by macrophages. These processes occurred actively up to 3 months and ceased thereafter. Cell-free substrates degraded faster, and also, the collagen deposition was lower as compared with cell-seeded substrates. The tissue surrounding the remnants of the Polyactive substrates after 24-months post-transplantation consisted of a mature connective tissue. The newly formed collagen had the same distribution pattern as observed in normal native dermis. We conclude therefore that treatment of full-thickness skin defects with fibroblast-populated BISKIN-M Polyactive substrates leads to satisfactory dermal regeneration.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验