Dearborn A S, Ertl A C, Jackson C G, Barnes P R, Breckler J L, Greenleaf J E
Laboratory for Human Environmental Physiology, NASA, Ames Research Center, Moffett Field, CA 94035-1000, USA.
Aviat Space Environ Med. 1999 Jan;70(1):35-41.
The influence of non-ionic osmols on thermoregulation is unclear.
Hyperglycemia will attenuate the rise in exercise core temperature.
Dehydrated by 4-h of water immersion (34.5 degrees C) to the neck, 6 men, (35+/-SD 7 yr) participated in each of three trials where 2.0 g x kg(-1) body wt of oral glucose (33.8% weight per volume) was consumed followed by 80 min supine rest (Glu/Rest), or 70 min supine cycle exercise at 62.8%+/-SE 0.5% (1.97+/-0.02 L x min(-1)) peak O2 uptake, followed by 10 min supine recovery with prior (Glu/Ex) or without glucose (No Glu/Ex) ingestion. Blood samples were taken periodically for measurement of Hb, Hct, Na+, K+, Osm, and glucose; mean skin (Tsk) and rectal (Tre) temperatures, and sweating rate (resistance hygrometry) and skin blood velocity (laser Doppler) were measured intermittently.
Mean percent changes in plasma volume (p<0.05) for the exercise trials were not different: -12.3+/-2.2% (No Glu/Ex) and -12.1+/-2.1% (Glu/Ex). Mean (+/-SE) pre-exercise plasma [glucose] for Glu/Ex was higher than that of No Glu/Ex (108.4+/-3.9 vs. 85.6+/-1.6 mg x dL(-1), respectively, p<0.05). Glu/Ex vs. No Glu/Ex data, respectively, at the end of exercise indicated that: Tre was lower by 0.4 degrees C (38.2+/-0.2 vs. 38.6+/-0.1 degrees C, p<0.05), Tsk was lower (32.0+/-0.3 vs. 32.4+/-0.2 degrees C, p<0.05), forearm sweating rate was lower (0.94+/-0.09 vs. 1.05+/-0.07 mg x cm(-2) x min(-1), p<0.05); and head (temporal) skin blood velocity was not different (1.67+/-0.21 vs. 1.51+/-0.24 Hz x 10(3), NS).
Elevation of plasma [glucose] prior to supine submaximal exercise in dehydrated men attenuates the increase of Tre without alteration of heat production, total body sweating, serum electrolytes and osmolality, or exercise-induced hypoglycemia: the mechanism may be enhanced peripheral blood flow that could enhance body heat loss.
非离子渗透压对体温调节的影响尚不清楚。
高血糖会减弱运动时核心体温的升高。
6名男性(年龄35±7岁)通过在34.5℃的水中浸泡颈部4小时进行脱水,然后参与三项试验中的每一项。在试验中,先摄入2.0g/kg体重的口服葡萄糖(重量体积比为33.8%),随后仰卧休息80分钟(葡萄糖/休息组);或者在仰卧位进行70分钟的循环运动,运动强度为峰值摄氧量的62.8%±0.5%(1.97±0.02L/min),随后仰卧恢复10分钟,其中一组在运动前摄入葡萄糖(葡萄糖/运动组),另一组不摄入葡萄糖(无葡萄糖/运动组)。定期采集血样以测量血红蛋白、血细胞比容、钠离子、钾离子、渗透压和葡萄糖;间歇性测量平均皮肤温度(Tsk)、直肠温度(Tre)、出汗率(电阻式湿度计测量)和皮肤血流速度(激光多普勒测量)。
运动试验中血浆量的平均百分比变化(p<0.05)无差异:-12.3±2.2%(无葡萄糖/运动组)和-12.1±2.1%(葡萄糖/运动组)。葡萄糖/运动组运动前血浆[葡萄糖]平均值(±标准误)高于无葡萄糖/运动组(分别为108.4±3.9与85.6±1.6mg/dL,p<0.05)。运动结束时,葡萄糖/运动组与无葡萄糖/运动组的数据分别表明:Tre低0.4℃(38.2±0.2与38.6±0.1℃,p<0.05),Tsk低(32.0±0.3与32.4±0.2℃,p<0.05),前臂出汗率低(0.94±0.09与1.05±0.07mg/cm²·min,p<0.05);头部(颞部)皮肤血流速度无差异(1.67±0.21与1.51±0.24Hz×10³,无显著差异)。
在脱水男性进行次最大强度仰卧运动前提高血浆[葡萄糖]水平可减弱Tre的升高,而不改变产热、全身出汗、血清电解质和渗透压或运动诱发的低血糖:其机制可能是外周血流增加,从而增强身体散热。